Boundary quotients of the right Toeplitz algebra of the affine semigroup over the natural numbers
We study the Toeplitz $C^*$-algebra generated by the right-regular representation of the semigroup ${\mathbb N \rtimes \mathbb N^\times}$, which we call the right Toeplitz algebra. We analyse its structure by studying three distinguished quotients. We show that the multiplicative boundary quotient i...
Gespeichert in:
Veröffentlicht in: | New Zealand journal of mathematics 2021-09, Vol.52, p.109-143 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | |
container_start_page | 109 |
container_title | New Zealand journal of mathematics |
container_volume | 52 |
creator | An Huef, Astrid Laca, Marcelo Raeburn, Iain |
description | We study the Toeplitz $C^*$-algebra generated by the right-regular representation of the semigroup ${\mathbb N \rtimes \mathbb N^\times}$, which we call the right Toeplitz algebra. We analyse its structure by studying three distinguished quotients. We show that the multiplicative boundary quotient is isomorphic to a crossed product of the Toeplitz algebra of the additive rationals by an action of the multiplicative rationals, and study its ideal structure. The Crisp--Laca boundary quotient is isomorphic to the $C^*$-algebra of the group ${\mathbb Q_+^\times}\!\! \ltimes \mathbb Q$. There is a natural dynamics on the right Toeplitz algebra and all its KMS states factor through the additive boundary quotient. We describe the KMS simplex for inverse temperatures greater than one. |
doi_str_mv | 10.53733/90 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_53733_90</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_53733_90</sourcerecordid><originalsourceid>FETCH-LOGICAL-c98t-fc122b0dc6ecca22227f1956d55a9a80c28d15db0e12dfd0422822027cd7d5113</originalsourceid><addsrcrecordid>eNpNkE1LxDAYhIMouFb_Q8BzNR9N0xx18QsWvPRe0uRNN9I2NUkF_fUuq4JzmYEHBmYQKii5EVxyfqvICdpQKlVZqaY6_ZfP0UVKb4TUXFZ0g_R9WGer4yd-X0P2MOeEg8N5Dzj6YZ9xG2AZff7Cehygj_qPauf8DDjB5IcY1gWHD4hHMuu8Rj3ieZ16iOkSnTk9Jrj69QK1jw_t9rncvT69bO92pVFNLp2hjPXEmhqM0ewg6agStRVCK90QwxpLhe0JUGadJRVjDWOESWOlFZTyAl3_1JoYUorguiX66TCso6Q7ntIpwr8BF9dU0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boundary quotients of the right Toeplitz algebra of the affine semigroup over the natural numbers</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><creator>An Huef, Astrid ; Laca, Marcelo ; Raeburn, Iain</creator><creatorcontrib>An Huef, Astrid ; Laca, Marcelo ; Raeburn, Iain</creatorcontrib><description>We study the Toeplitz $C^*$-algebra generated by the right-regular representation of the semigroup ${\mathbb N \rtimes \mathbb N^\times}$, which we call the right Toeplitz algebra. We analyse its structure by studying three distinguished quotients. We show that the multiplicative boundary quotient is isomorphic to a crossed product of the Toeplitz algebra of the additive rationals by an action of the multiplicative rationals, and study its ideal structure. The Crisp--Laca boundary quotient is isomorphic to the $C^*$-algebra of the group ${\mathbb Q_+^\times}\!\! \ltimes \mathbb Q$. There is a natural dynamics on the right Toeplitz algebra and all its KMS states factor through the additive boundary quotient. We describe the KMS simplex for inverse temperatures greater than one.</description><identifier>ISSN: 1179-4984</identifier><identifier>EISSN: 1179-4984</identifier><identifier>DOI: 10.53733/90</identifier><language>eng</language><ispartof>New Zealand journal of mathematics, 2021-09, Vol.52, p.109-143</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>An Huef, Astrid</creatorcontrib><creatorcontrib>Laca, Marcelo</creatorcontrib><creatorcontrib>Raeburn, Iain</creatorcontrib><title>Boundary quotients of the right Toeplitz algebra of the affine semigroup over the natural numbers</title><title>New Zealand journal of mathematics</title><description>We study the Toeplitz $C^*$-algebra generated by the right-regular representation of the semigroup ${\mathbb N \rtimes \mathbb N^\times}$, which we call the right Toeplitz algebra. We analyse its structure by studying three distinguished quotients. We show that the multiplicative boundary quotient is isomorphic to a crossed product of the Toeplitz algebra of the additive rationals by an action of the multiplicative rationals, and study its ideal structure. The Crisp--Laca boundary quotient is isomorphic to the $C^*$-algebra of the group ${\mathbb Q_+^\times}\!\! \ltimes \mathbb Q$. There is a natural dynamics on the right Toeplitz algebra and all its KMS states factor through the additive boundary quotient. We describe the KMS simplex for inverse temperatures greater than one.</description><issn>1179-4984</issn><issn>1179-4984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAYhIMouFb_Q8BzNR9N0xx18QsWvPRe0uRNN9I2NUkF_fUuq4JzmYEHBmYQKii5EVxyfqvICdpQKlVZqaY6_ZfP0UVKb4TUXFZ0g_R9WGer4yd-X0P2MOeEg8N5Dzj6YZ9xG2AZff7Cehygj_qPauf8DDjB5IcY1gWHD4hHMuu8Rj3ieZ16iOkSnTk9Jrj69QK1jw_t9rncvT69bO92pVFNLp2hjPXEmhqM0ewg6agStRVCK90QwxpLhe0JUGadJRVjDWOESWOlFZTyAl3_1JoYUorguiX66TCso6Q7ntIpwr8BF9dU0g</recordid><startdate>20210919</startdate><enddate>20210919</enddate><creator>An Huef, Astrid</creator><creator>Laca, Marcelo</creator><creator>Raeburn, Iain</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210919</creationdate><title>Boundary quotients of the right Toeplitz algebra of the affine semigroup over the natural numbers</title><author>An Huef, Astrid ; Laca, Marcelo ; Raeburn, Iain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c98t-fc122b0dc6ecca22227f1956d55a9a80c28d15db0e12dfd0422822027cd7d5113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An Huef, Astrid</creatorcontrib><creatorcontrib>Laca, Marcelo</creatorcontrib><creatorcontrib>Raeburn, Iain</creatorcontrib><collection>CrossRef</collection><jtitle>New Zealand journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An Huef, Astrid</au><au>Laca, Marcelo</au><au>Raeburn, Iain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary quotients of the right Toeplitz algebra of the affine semigroup over the natural numbers</atitle><jtitle>New Zealand journal of mathematics</jtitle><date>2021-09-19</date><risdate>2021</risdate><volume>52</volume><spage>109</spage><epage>143</epage><pages>109-143</pages><issn>1179-4984</issn><eissn>1179-4984</eissn><abstract>We study the Toeplitz $C^*$-algebra generated by the right-regular representation of the semigroup ${\mathbb N \rtimes \mathbb N^\times}$, which we call the right Toeplitz algebra. We analyse its structure by studying three distinguished quotients. We show that the multiplicative boundary quotient is isomorphic to a crossed product of the Toeplitz algebra of the additive rationals by an action of the multiplicative rationals, and study its ideal structure. The Crisp--Laca boundary quotient is isomorphic to the $C^*$-algebra of the group ${\mathbb Q_+^\times}\!\! \ltimes \mathbb Q$. There is a natural dynamics on the right Toeplitz algebra and all its KMS states factor through the additive boundary quotient. We describe the KMS simplex for inverse temperatures greater than one.</abstract><doi>10.53733/90</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1179-4984 |
ispartof | New Zealand journal of mathematics, 2021-09, Vol.52, p.109-143 |
issn | 1179-4984 1179-4984 |
language | eng |
recordid | cdi_crossref_primary_10_53733_90 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free E- Journals |
title | Boundary quotients of the right Toeplitz algebra of the affine semigroup over the natural numbers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20quotients%20of%20the%20right%20Toeplitz%20algebra%20of%20the%20affine%20semigroup%20over%20the%20natural%20numbers&rft.jtitle=New%20Zealand%20journal%20of%20mathematics&rft.au=An%20Huef,%20Astrid&rft.date=2021-09-19&rft.volume=52&rft.spage=109&rft.epage=143&rft.pages=109-143&rft.issn=1179-4984&rft.eissn=1179-4984&rft_id=info:doi/10.53733/90&rft_dat=%3Ccrossref%3E10_53733_90%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |