Group Actions on Product Systems
We introduce the concept of a crossed product of a product system by a locally compact group. We prove that the crossed product of a row-finite and faithful product system by an amenable group is also a row-finite and faithful product system. We generalize a theorem of Hao and Ng about the crossed p...
Gespeichert in:
Veröffentlicht in: | New Zealand journal of mathematics 2023-10, Vol.54, p.33-47 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | |
container_start_page | 33 |
container_title | New Zealand journal of mathematics |
container_volume | 54 |
creator | Deaconu, Valentin Huang, Leonard |
description | We introduce the concept of a crossed product of a product system by a locally compact group. We prove that the crossed product of a row-finite and faithful product system by an amenable group is also a row-finite and faithful product system. We generalize a theorem of Hao and Ng about the crossed product of the Cuntz-Pimsner algebra of a $C^{\ast}$-correspondence by a group action to the context of product systems. We present examples related to group actions on $k$-graphs and to higher rank Doplicher-Roberts algebras. |
doi_str_mv | 10.53733/311 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_53733_311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_53733_311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1291-d76d0ce500732f49791615b813ac767f31e1bad1e8fbf6b5ed08c9cc3c0c11963</originalsourceid><addsrcrecordid>eNpNj0FLAzEUBoMoWFv_Qw5eV9_Xt5tsjqVoFQoKtudl9yWBim1Ksj303yvqwdPMaWCUmoHuG7bMDwxcqAlgXVW7tr7859fqppQPIsO2xkTpVU6no17IuEuHotNBv-XkTzLq93MZw77M1FXsP0u4_eNUbZ8eN8vnav26elku1pVg7lB5azxJaIgsz2PtrINBM7TgXqyxkREw9B6hjUM0QxM8teJEWEgAZ3iq7n67klMpOcTumHf7Pp87UPdz1X1f8RdLlzyl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Group Actions on Product Systems</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><creator>Deaconu, Valentin ; Huang, Leonard</creator><creatorcontrib>Deaconu, Valentin ; Huang, Leonard</creatorcontrib><description>We introduce the concept of a crossed product of a product system by a locally compact group. We prove that the crossed product of a row-finite and faithful product system by an amenable group is also a row-finite and faithful product system. We generalize a theorem of Hao and Ng about the crossed product of the Cuntz-Pimsner algebra of a $C^{\ast}$-correspondence by a group action to the context of product systems. We present examples related to group actions on $k$-graphs and to higher rank Doplicher-Roberts algebras.</description><identifier>ISSN: 1179-4984</identifier><identifier>EISSN: 1179-4984</identifier><identifier>DOI: 10.53733/311</identifier><language>eng</language><ispartof>New Zealand journal of mathematics, 2023-10, Vol.54, p.33-47</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Deaconu, Valentin</creatorcontrib><creatorcontrib>Huang, Leonard</creatorcontrib><title>Group Actions on Product Systems</title><title>New Zealand journal of mathematics</title><description>We introduce the concept of a crossed product of a product system by a locally compact group. We prove that the crossed product of a row-finite and faithful product system by an amenable group is also a row-finite and faithful product system. We generalize a theorem of Hao and Ng about the crossed product of the Cuntz-Pimsner algebra of a $C^{\ast}$-correspondence by a group action to the context of product systems. We present examples related to group actions on $k$-graphs and to higher rank Doplicher-Roberts algebras.</description><issn>1179-4984</issn><issn>1179-4984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNj0FLAzEUBoMoWFv_Qw5eV9_Xt5tsjqVoFQoKtudl9yWBim1Ksj303yvqwdPMaWCUmoHuG7bMDwxcqAlgXVW7tr7859fqppQPIsO2xkTpVU6no17IuEuHotNBv-XkTzLq93MZw77M1FXsP0u4_eNUbZ8eN8vnav26elku1pVg7lB5azxJaIgsz2PtrINBM7TgXqyxkREw9B6hjUM0QxM8teJEWEgAZ3iq7n67klMpOcTumHf7Pp87UPdz1X1f8RdLlzyl</recordid><startdate>20231019</startdate><enddate>20231019</enddate><creator>Deaconu, Valentin</creator><creator>Huang, Leonard</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231019</creationdate><title>Group Actions on Product Systems</title><author>Deaconu, Valentin ; Huang, Leonard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1291-d76d0ce500732f49791615b813ac767f31e1bad1e8fbf6b5ed08c9cc3c0c11963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deaconu, Valentin</creatorcontrib><creatorcontrib>Huang, Leonard</creatorcontrib><collection>CrossRef</collection><jtitle>New Zealand journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deaconu, Valentin</au><au>Huang, Leonard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group Actions on Product Systems</atitle><jtitle>New Zealand journal of mathematics</jtitle><date>2023-10-19</date><risdate>2023</risdate><volume>54</volume><spage>33</spage><epage>47</epage><pages>33-47</pages><issn>1179-4984</issn><eissn>1179-4984</eissn><abstract>We introduce the concept of a crossed product of a product system by a locally compact group. We prove that the crossed product of a row-finite and faithful product system by an amenable group is also a row-finite and faithful product system. We generalize a theorem of Hao and Ng about the crossed product of the Cuntz-Pimsner algebra of a $C^{\ast}$-correspondence by a group action to the context of product systems. We present examples related to group actions on $k$-graphs and to higher rank Doplicher-Roberts algebras.</abstract><doi>10.53733/311</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1179-4984 |
ispartof | New Zealand journal of mathematics, 2023-10, Vol.54, p.33-47 |
issn | 1179-4984 1179-4984 |
language | eng |
recordid | cdi_crossref_primary_10_53733_311 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free E- Journals |
title | Group Actions on Product Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20Actions%20on%20Product%20Systems&rft.jtitle=New%20Zealand%20journal%20of%20mathematics&rft.au=Deaconu,%20Valentin&rft.date=2023-10-19&rft.volume=54&rft.spage=33&rft.epage=47&rft.pages=33-47&rft.issn=1179-4984&rft.eissn=1179-4984&rft_id=info:doi/10.53733/311&rft_dat=%3Ccrossref%3E10_53733_311%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |