Existence and stability results for fixed points of multivalued $F$ contractions and application to Volterra type non homogeneous integral equation of second kind

In this paper we introduce multivalued modified F-contraction on a metric space. This is a multivalued mapping obtained by incorporating the idea of the recently introduced F-contraction which has attracted much attention in contemporary research. We explore the fixed point problem associated with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analele Universității din Craiova. Seria matematică, informatică informatică, 2023-06, Vol.50 (1), p.1-15
Hauptverfasser: Choudhury, Binayak S., Metiya, Nikhilesh, Som, T., Kundu, Sunirmal
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 1
container_title Analele Universității din Craiova. Seria matematică, informatică
container_volume 50
creator Choudhury, Binayak S.
Metiya, Nikhilesh
Som, T.
Kundu, Sunirmal
description In this paper we introduce multivalued modified F-contraction on a metric space. This is a multivalued mapping obtained by incorporating the idea of the recently introduced F-contraction which has attracted much attention in contemporary research. We explore the fixed point problem associated with the above contractive mapping. We also investigate the data dependence and stability properties of the fixed point sets associated with these multivalued contractions. We discuss an illustration of the main result and present an application of the single valued version of the main theorem to a problem of an integral equation of Volterra type. The domain of the study is fixed point theory and set valued analysis.
doi_str_mv 10.52846/ami.v50i1.1597
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_52846_ami_v50i1_1597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_52846_ami_v50i1_1597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-4ad4274fbd20f0fefe02fa3c983e84874d2bdaa570d9502e986d890aab03e2c03</originalsourceid><addsrcrecordid>eNotkD1PwzAQhi0EElXpzOqha1rH-bJHVLWAVIkFWKNLfC4WSRxst2r_Dr8Ut2U66Xl1z-leQh5Ttii4yMsl9GZxKJhJF2khqxsy4TwvEykLcUsmKedZUsosvycz703DmIwJE-mE_K6PxgccWqQwKOoDNKYz4UQd-n0XPNXWUW2OqOhozRCB1bSPiTlAt490vpnT1g7BQRuMHfxFA-PYmRbOgAZLP20X0Dmg4TQiHSL8sr3d4YB272m04s5BR_Fnf12JJzxGqaLfZlAP5E5D53H2P6fkY7N-X70k27fn19XTNmlTWYQkB5XzKteN4kwzjRoZ15C1UmQoclHlijcKoKiYir9zlKJUQjKAhmXIW5ZNyfLqbZ313qGuR2d6cKc6ZfWl5Tq2XF9ars8tZ3-1TnaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Existence and stability results for fixed points of multivalued $F$ contractions and application to Volterra type non homogeneous integral equation of second kind</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Choudhury, Binayak S. ; Metiya, Nikhilesh ; Som, T. ; Kundu, Sunirmal</creator><creatorcontrib>Choudhury, Binayak S. ; Metiya, Nikhilesh ; Som, T. ; Kundu, Sunirmal ; Department of Mathematics, Sovarani Memorial College, Jagatballavpur, Howrah-711408, West Bengal, India ; Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, India ; Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103, West Bengal, India ; Department of Mathematics, Government General Degree College, Salboni, Paschim Mednipur - 712516, West Bengal, India</creatorcontrib><description>In this paper we introduce multivalued modified F-contraction on a metric space. This is a multivalued mapping obtained by incorporating the idea of the recently introduced F-contraction which has attracted much attention in contemporary research. We explore the fixed point problem associated with the above contractive mapping. We also investigate the data dependence and stability properties of the fixed point sets associated with these multivalued contractions. We discuss an illustration of the main result and present an application of the single valued version of the main theorem to a problem of an integral equation of Volterra type. The domain of the study is fixed point theory and set valued analysis.</description><identifier>ISSN: 1223-6934</identifier><identifier>EISSN: 2246-9958</identifier><identifier>DOI: 10.52846/ami.v50i1.1597</identifier><language>eng</language><ispartof>Analele Universității din Craiova. Seria matematică, informatică, 2023-06, Vol.50 (1), p.1-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c195t-4ad4274fbd20f0fefe02fa3c983e84874d2bdaa570d9502e986d890aab03e2c03</cites><orcidid>0000-0001-7494-5005 ; 0000-0001-7308-0513 ; 0000-0002-6579-7204 ; 0000-0002-7263-6636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Choudhury, Binayak S.</creatorcontrib><creatorcontrib>Metiya, Nikhilesh</creatorcontrib><creatorcontrib>Som, T.</creatorcontrib><creatorcontrib>Kundu, Sunirmal</creatorcontrib><creatorcontrib>Department of Mathematics, Sovarani Memorial College, Jagatballavpur, Howrah-711408, West Bengal, India</creatorcontrib><creatorcontrib>Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, India</creatorcontrib><creatorcontrib>Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103, West Bengal, India</creatorcontrib><creatorcontrib>Department of Mathematics, Government General Degree College, Salboni, Paschim Mednipur - 712516, West Bengal, India</creatorcontrib><title>Existence and stability results for fixed points of multivalued $F$ contractions and application to Volterra type non homogeneous integral equation of second kind</title><title>Analele Universității din Craiova. Seria matematică, informatică</title><description>In this paper we introduce multivalued modified F-contraction on a metric space. This is a multivalued mapping obtained by incorporating the idea of the recently introduced F-contraction which has attracted much attention in contemporary research. We explore the fixed point problem associated with the above contractive mapping. We also investigate the data dependence and stability properties of the fixed point sets associated with these multivalued contractions. We discuss an illustration of the main result and present an application of the single valued version of the main theorem to a problem of an integral equation of Volterra type. The domain of the study is fixed point theory and set valued analysis.</description><issn>1223-6934</issn><issn>2246-9958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAQhi0EElXpzOqha1rH-bJHVLWAVIkFWKNLfC4WSRxst2r_Dr8Ut2U66Xl1z-leQh5Ttii4yMsl9GZxKJhJF2khqxsy4TwvEykLcUsmKedZUsosvycz703DmIwJE-mE_K6PxgccWqQwKOoDNKYz4UQd-n0XPNXWUW2OqOhozRCB1bSPiTlAt490vpnT1g7BQRuMHfxFA-PYmRbOgAZLP20X0Dmg4TQiHSL8sr3d4YB272m04s5BR_Fnf12JJzxGqaLfZlAP5E5D53H2P6fkY7N-X70k27fn19XTNmlTWYQkB5XzKteN4kwzjRoZ15C1UmQoclHlijcKoKiYir9zlKJUQjKAhmXIW5ZNyfLqbZ313qGuR2d6cKc6ZfWl5Tq2XF9ars8tZ3-1TnaQ</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>Choudhury, Binayak S.</creator><creator>Metiya, Nikhilesh</creator><creator>Som, T.</creator><creator>Kundu, Sunirmal</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7494-5005</orcidid><orcidid>https://orcid.org/0000-0001-7308-0513</orcidid><orcidid>https://orcid.org/0000-0002-6579-7204</orcidid><orcidid>https://orcid.org/0000-0002-7263-6636</orcidid></search><sort><creationdate>20230630</creationdate><title>Existence and stability results for fixed points of multivalued $F$ contractions and application to Volterra type non homogeneous integral equation of second kind</title><author>Choudhury, Binayak S. ; Metiya, Nikhilesh ; Som, T. ; Kundu, Sunirmal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-4ad4274fbd20f0fefe02fa3c983e84874d2bdaa570d9502e986d890aab03e2c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhury, Binayak S.</creatorcontrib><creatorcontrib>Metiya, Nikhilesh</creatorcontrib><creatorcontrib>Som, T.</creatorcontrib><creatorcontrib>Kundu, Sunirmal</creatorcontrib><creatorcontrib>Department of Mathematics, Sovarani Memorial College, Jagatballavpur, Howrah-711408, West Bengal, India</creatorcontrib><creatorcontrib>Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, India</creatorcontrib><creatorcontrib>Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103, West Bengal, India</creatorcontrib><creatorcontrib>Department of Mathematics, Government General Degree College, Salboni, Paschim Mednipur - 712516, West Bengal, India</creatorcontrib><collection>CrossRef</collection><jtitle>Analele Universității din Craiova. Seria matematică, informatică</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhury, Binayak S.</au><au>Metiya, Nikhilesh</au><au>Som, T.</au><au>Kundu, Sunirmal</au><aucorp>Department of Mathematics, Sovarani Memorial College, Jagatballavpur, Howrah-711408, West Bengal, India</aucorp><aucorp>Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, India</aucorp><aucorp>Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103, West Bengal, India</aucorp><aucorp>Department of Mathematics, Government General Degree College, Salboni, Paschim Mednipur - 712516, West Bengal, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and stability results for fixed points of multivalued $F$ contractions and application to Volterra type non homogeneous integral equation of second kind</atitle><jtitle>Analele Universității din Craiova. Seria matematică, informatică</jtitle><date>2023-06-30</date><risdate>2023</risdate><volume>50</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1223-6934</issn><eissn>2246-9958</eissn><abstract>In this paper we introduce multivalued modified F-contraction on a metric space. This is a multivalued mapping obtained by incorporating the idea of the recently introduced F-contraction which has attracted much attention in contemporary research. We explore the fixed point problem associated with the above contractive mapping. We also investigate the data dependence and stability properties of the fixed point sets associated with these multivalued contractions. We discuss an illustration of the main result and present an application of the single valued version of the main theorem to a problem of an integral equation of Volterra type. The domain of the study is fixed point theory and set valued analysis.</abstract><doi>10.52846/ami.v50i1.1597</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7494-5005</orcidid><orcidid>https://orcid.org/0000-0001-7308-0513</orcidid><orcidid>https://orcid.org/0000-0002-6579-7204</orcidid><orcidid>https://orcid.org/0000-0002-7263-6636</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1223-6934
ispartof Analele Universității din Craiova. Seria matematică, informatică, 2023-06, Vol.50 (1), p.1-15
issn 1223-6934
2246-9958
language eng
recordid cdi_crossref_primary_10_52846_ami_v50i1_1597
source EZB-FREE-00999 freely available EZB journals
title Existence and stability results for fixed points of multivalued $F$ contractions and application to Volterra type non homogeneous integral equation of second kind
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20stability%20results%20for%20fixed%20points%20of%20multivalued%20$F$%20contractions%20and%20application%20to%20Volterra%20type%20non%20homogeneous%20integral%20equation%20of%20second%20kind&rft.jtitle=Analele%20Universit%C4%83%C8%9Bii%20din%20Craiova.%20Seria%20matematic%C4%83,%20informatic%C4%83&rft.au=Choudhury,%20Binayak%20S.&rft.aucorp=Department%20of%20Mathematics,%20Sovarani%20Memorial%20College,%20Jagatballavpur,%20Howrah-711408,%20West%20Bengal,%20India&rft.date=2023-06-30&rft.volume=50&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1223-6934&rft.eissn=2246-9958&rft_id=info:doi/10.52846/ami.v50i1.1597&rft_dat=%3Ccrossref%3E10_52846_ami_v50i1_1597%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true