New Data Mining approach for clustering Export Credit Agencies (ECAs) based on performance criteria: a bibliometric citation analysis for the period 2005 to 2020
Nowadays, ECAs have a crucial role in the export of production, creating job opportunities for countries and growth of economic indicators.This research aims first to estimate the performance of ECAs based on covering all countries of the world and ranking the countries based on the issue of export...
Gespeichert in:
Veröffentlicht in: | Analele Universității din Craiova. Seria matematică, informatică informatică, 2021-06, Vol.48 (1), p.374-383 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 383 |
---|---|
container_issue | 1 |
container_start_page | 374 |
container_title | Analele Universității din Craiova. Seria matematică, informatică |
container_volume | 48 |
creator | Shahraeini, Seyed Arash Tabrizi, Seyfollah Spulbar, Cristi Birau, Ramona Yazdi, Amir Karbassi |
description | Nowadays, ECAs have a crucial role in the export of production, creating job opportunities for countries and growth of economic indicators.This research aims first to estimate the performance of ECAs based on covering all countries of the world and ranking the countries based on the issue of export credit according to their performance and clustering techniques. For evaluation performance of these ECAs, clustering techniques are used to put them in the categories according to their performance between 2005 to 2020 in the fourth quarter. The context of clustering shows the rank of each cluster, and then exporters can choose a better choice from them. Moreover, for reinsurance,other ECAs can find out which ECAs have high performance. The result indicates that ranking the ECAs and show the performance of each cluster. |
doi_str_mv | 10.52846/ami.v48i1.1579 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_52846_ami_v48i1_1579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_52846_ami_v48i1_1579</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_52846_ami_v48i1_15793</originalsourceid><addsrcrecordid>eNqVkLtOxDAQRS0EEhFsTTslFMnazoOEbhV2RQMVvTVxnN2RkjiyzWM_hz8lifgBqivNnaMrHcbuBE9yWWbFFgdKPrOSRCLyx-qCRVJmRVxVeXnJIiFlGhdVml2zjffUcF7NDS9FxH7ezBc8Y0B4pZHGI-A0OYv6BJ11oPsPH4xb7vvvyboAtTMtBdgdzajJeLjf1zv_AA1604IdYTJuBgcctQHtaIHxCRAaanqygwmONGgKGGj-xhH7sye_joWTWXCyLUjOcwh2Tslv2VWHvTebv7xh28P-vX6JtbPeO9OpydGA7qwEV6sMNctQqwy1yEj_T_wCz2VqCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New Data Mining approach for clustering Export Credit Agencies (ECAs) based on performance criteria: a bibliometric citation analysis for the period 2005 to 2020</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shahraeini, Seyed Arash ; Tabrizi, Seyfollah ; Spulbar, Cristi ; Birau, Ramona ; Yazdi, Amir Karbassi</creator><creatorcontrib>Shahraeini, Seyed Arash ; Tabrizi, Seyfollah ; Spulbar, Cristi ; Birau, Ramona ; Yazdi, Amir Karbassi ; Islamic Azad University, South Tehran Branch, Tehran, Iran ; "Islamic Azad University, Central Tehran Branch, Tehran, Iran " ; Islamic Azad University, North Tehran Branch, Tehran, Iran ; University of Craiova, Romania</creatorcontrib><description>Nowadays, ECAs have a crucial role in the export of production, creating job opportunities for countries and growth of economic indicators.This research aims first to estimate the performance of ECAs based on covering all countries of the world and ranking the countries based on the issue of export credit according to their performance and clustering techniques. For evaluation performance of these ECAs, clustering techniques are used to put them in the categories according to their performance between 2005 to 2020 in the fourth quarter. The context of clustering shows the rank of each cluster, and then exporters can choose a better choice from them. Moreover, for reinsurance,other ECAs can find out which ECAs have high performance. The result indicates that ranking the ECAs and show the performance of each cluster.</description><identifier>ISSN: 1223-6934</identifier><identifier>EISSN: 2246-9958</identifier><identifier>DOI: 10.52846/ami.v48i1.1579</identifier><language>eng</language><ispartof>Analele Universității din Craiova. Seria matematică, informatică, 2021-06, Vol.48 (1), p.374-383</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3909-9496 ; 0000-0001-9436-5833 ; 0000-0003-1638-4291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Shahraeini, Seyed Arash</creatorcontrib><creatorcontrib>Tabrizi, Seyfollah</creatorcontrib><creatorcontrib>Spulbar, Cristi</creatorcontrib><creatorcontrib>Birau, Ramona</creatorcontrib><creatorcontrib>Yazdi, Amir Karbassi</creatorcontrib><creatorcontrib>Islamic Azad University, South Tehran Branch, Tehran, Iran</creatorcontrib><creatorcontrib>"Islamic Azad University, Central Tehran Branch, Tehran, Iran "</creatorcontrib><creatorcontrib>Islamic Azad University, North Tehran Branch, Tehran, Iran</creatorcontrib><creatorcontrib>University of Craiova, Romania</creatorcontrib><title>New Data Mining approach for clustering Export Credit Agencies (ECAs) based on performance criteria: a bibliometric citation analysis for the period 2005 to 2020</title><title>Analele Universității din Craiova. Seria matematică, informatică</title><description>Nowadays, ECAs have a crucial role in the export of production, creating job opportunities for countries and growth of economic indicators.This research aims first to estimate the performance of ECAs based on covering all countries of the world and ranking the countries based on the issue of export credit according to their performance and clustering techniques. For evaluation performance of these ECAs, clustering techniques are used to put them in the categories according to their performance between 2005 to 2020 in the fourth quarter. The context of clustering shows the rank of each cluster, and then exporters can choose a better choice from them. Moreover, for reinsurance,other ECAs can find out which ECAs have high performance. The result indicates that ranking the ECAs and show the performance of each cluster.</description><issn>1223-6934</issn><issn>2246-9958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqVkLtOxDAQRS0EEhFsTTslFMnazoOEbhV2RQMVvTVxnN2RkjiyzWM_hz8lifgBqivNnaMrHcbuBE9yWWbFFgdKPrOSRCLyx-qCRVJmRVxVeXnJIiFlGhdVml2zjffUcF7NDS9FxH7ezBc8Y0B4pZHGI-A0OYv6BJ11oPsPH4xb7vvvyboAtTMtBdgdzajJeLjf1zv_AA1604IdYTJuBgcctQHtaIHxCRAaanqygwmONGgKGGj-xhH7sye_joWTWXCyLUjOcwh2Tslv2VWHvTebv7xh28P-vX6JtbPeO9OpydGA7qwEV6sMNctQqwy1yEj_T_wCz2VqCA</recordid><startdate>20210630</startdate><enddate>20210630</enddate><creator>Shahraeini, Seyed Arash</creator><creator>Tabrizi, Seyfollah</creator><creator>Spulbar, Cristi</creator><creator>Birau, Ramona</creator><creator>Yazdi, Amir Karbassi</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3909-9496</orcidid><orcidid>https://orcid.org/0000-0001-9436-5833</orcidid><orcidid>https://orcid.org/0000-0003-1638-4291</orcidid></search><sort><creationdate>20210630</creationdate><title>New Data Mining approach for clustering Export Credit Agencies (ECAs) based on performance criteria: a bibliometric citation analysis for the period 2005 to 2020</title><author>Shahraeini, Seyed Arash ; Tabrizi, Seyfollah ; Spulbar, Cristi ; Birau, Ramona ; Yazdi, Amir Karbassi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_52846_ami_v48i1_15793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahraeini, Seyed Arash</creatorcontrib><creatorcontrib>Tabrizi, Seyfollah</creatorcontrib><creatorcontrib>Spulbar, Cristi</creatorcontrib><creatorcontrib>Birau, Ramona</creatorcontrib><creatorcontrib>Yazdi, Amir Karbassi</creatorcontrib><creatorcontrib>Islamic Azad University, South Tehran Branch, Tehran, Iran</creatorcontrib><creatorcontrib>"Islamic Azad University, Central Tehran Branch, Tehran, Iran "</creatorcontrib><creatorcontrib>Islamic Azad University, North Tehran Branch, Tehran, Iran</creatorcontrib><creatorcontrib>University of Craiova, Romania</creatorcontrib><collection>CrossRef</collection><jtitle>Analele Universității din Craiova. Seria matematică, informatică</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahraeini, Seyed Arash</au><au>Tabrizi, Seyfollah</au><au>Spulbar, Cristi</au><au>Birau, Ramona</au><au>Yazdi, Amir Karbassi</au><aucorp>Islamic Azad University, South Tehran Branch, Tehran, Iran</aucorp><aucorp>"Islamic Azad University, Central Tehran Branch, Tehran, Iran "</aucorp><aucorp>Islamic Azad University, North Tehran Branch, Tehran, Iran</aucorp><aucorp>University of Craiova, Romania</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Data Mining approach for clustering Export Credit Agencies (ECAs) based on performance criteria: a bibliometric citation analysis for the period 2005 to 2020</atitle><jtitle>Analele Universității din Craiova. Seria matematică, informatică</jtitle><date>2021-06-30</date><risdate>2021</risdate><volume>48</volume><issue>1</issue><spage>374</spage><epage>383</epage><pages>374-383</pages><issn>1223-6934</issn><eissn>2246-9958</eissn><abstract>Nowadays, ECAs have a crucial role in the export of production, creating job opportunities for countries and growth of economic indicators.This research aims first to estimate the performance of ECAs based on covering all countries of the world and ranking the countries based on the issue of export credit according to their performance and clustering techniques. For evaluation performance of these ECAs, clustering techniques are used to put them in the categories according to their performance between 2005 to 2020 in the fourth quarter. The context of clustering shows the rank of each cluster, and then exporters can choose a better choice from them. Moreover, for reinsurance,other ECAs can find out which ECAs have high performance. The result indicates that ranking the ECAs and show the performance of each cluster.</abstract><doi>10.52846/ami.v48i1.1579</doi><orcidid>https://orcid.org/0000-0002-3909-9496</orcidid><orcidid>https://orcid.org/0000-0001-9436-5833</orcidid><orcidid>https://orcid.org/0000-0003-1638-4291</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1223-6934 |
ispartof | Analele Universității din Craiova. Seria matematică, informatică, 2021-06, Vol.48 (1), p.374-383 |
issn | 1223-6934 2246-9958 |
language | eng |
recordid | cdi_crossref_primary_10_52846_ami_v48i1_1579 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | New Data Mining approach for clustering Export Credit Agencies (ECAs) based on performance criteria: a bibliometric citation analysis for the period 2005 to 2020 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Data%20Mining%20approach%20for%20clustering%20Export%20Credit%20Agencies%20(ECAs)%20based%20on%20performance%20criteria:%20a%20bibliometric%20citation%20analysis%20for%20the%20period%202005%20to%202020&rft.jtitle=Analele%20Universit%C4%83%C8%9Bii%20din%20Craiova.%20Seria%20matematic%C4%83,%20informatic%C4%83&rft.au=Shahraeini,%20Seyed%20Arash&rft.aucorp=Islamic%20Azad%20University,%20South%20Tehran%20Branch,%20Tehran,%20Iran&rft.date=2021-06-30&rft.volume=48&rft.issue=1&rft.spage=374&rft.epage=383&rft.pages=374-383&rft.issn=1223-6934&rft.eissn=2246-9958&rft_id=info:doi/10.52846/ami.v48i1.1579&rft_dat=%3Ccrossref%3E10_52846_ami_v48i1_1579%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |