New Data Mining approach for clustering Export Credit Agencies (ECAs) based on performance criteria: a bibliometric citation analysis for the period 2005 to 2020

Nowadays, ECAs have a crucial role in the export of production, creating job opportunities for countries and growth of economic indicators.This research aims first to estimate the performance of ECAs based on covering all countries of the world and ranking the countries based on the issue of export...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analele Universității din Craiova. Seria matematică, informatică informatică, 2021-06, Vol.48 (1), p.374-383
Hauptverfasser: Shahraeini, Seyed Arash, Tabrizi, Seyfollah, Spulbar, Cristi, Birau, Ramona, Yazdi, Amir Karbassi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 383
container_issue 1
container_start_page 374
container_title Analele Universității din Craiova. Seria matematică, informatică
container_volume 48
creator Shahraeini, Seyed Arash
Tabrizi, Seyfollah
Spulbar, Cristi
Birau, Ramona
Yazdi, Amir Karbassi
description Nowadays, ECAs have a crucial role in the export of production, creating job opportunities for countries and growth of economic indicators.This research aims first to estimate the performance of ECAs based on covering all countries of the world and ranking the countries based on the issue of export credit according to their performance and clustering techniques. For evaluation performance of these ECAs, clustering techniques are used to put them in the categories according to their performance between 2005 to 2020 in the fourth quarter. The context of clustering shows the rank of each cluster, and then exporters can choose a better choice from them. Moreover, for reinsurance,other ECAs can find out which ECAs have high performance. The result indicates that ranking the ECAs and show the performance of each cluster.
doi_str_mv 10.52846/ami.v48i1.1579
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_52846_ami_v48i1_1579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_52846_ami_v48i1_1579</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_52846_ami_v48i1_15793</originalsourceid><addsrcrecordid>eNqVkLtOxDAQRS0EEhFsTTslFMnazoOEbhV2RQMVvTVxnN2RkjiyzWM_hz8lifgBqivNnaMrHcbuBE9yWWbFFgdKPrOSRCLyx-qCRVJmRVxVeXnJIiFlGhdVml2zjffUcF7NDS9FxH7ezBc8Y0B4pZHGI-A0OYv6BJ11oPsPH4xb7vvvyboAtTMtBdgdzajJeLjf1zv_AA1604IdYTJuBgcctQHtaIHxCRAaanqygwmONGgKGGj-xhH7sye_joWTWXCyLUjOcwh2Tslv2VWHvTebv7xh28P-vX6JtbPeO9OpydGA7qwEV6sMNctQqwy1yEj_T_wCz2VqCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New Data Mining approach for clustering Export Credit Agencies (ECAs) based on performance criteria: a bibliometric citation analysis for the period 2005 to 2020</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shahraeini, Seyed Arash ; Tabrizi, Seyfollah ; Spulbar, Cristi ; Birau, Ramona ; Yazdi, Amir Karbassi</creator><creatorcontrib>Shahraeini, Seyed Arash ; Tabrizi, Seyfollah ; Spulbar, Cristi ; Birau, Ramona ; Yazdi, Amir Karbassi ; Islamic Azad University, South Tehran Branch, Tehran, Iran ; "Islamic Azad University, Central Tehran Branch, Tehran, Iran " ; Islamic Azad University, North Tehran Branch, Tehran, Iran ; University of Craiova, Romania</creatorcontrib><description>Nowadays, ECAs have a crucial role in the export of production, creating job opportunities for countries and growth of economic indicators.This research aims first to estimate the performance of ECAs based on covering all countries of the world and ranking the countries based on the issue of export credit according to their performance and clustering techniques. For evaluation performance of these ECAs, clustering techniques are used to put them in the categories according to their performance between 2005 to 2020 in the fourth quarter. The context of clustering shows the rank of each cluster, and then exporters can choose a better choice from them. Moreover, for reinsurance,other ECAs can find out which ECAs have high performance. The result indicates that ranking the ECAs and show the performance of each cluster.</description><identifier>ISSN: 1223-6934</identifier><identifier>EISSN: 2246-9958</identifier><identifier>DOI: 10.52846/ami.v48i1.1579</identifier><language>eng</language><ispartof>Analele Universității din Craiova. Seria matematică, informatică, 2021-06, Vol.48 (1), p.374-383</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3909-9496 ; 0000-0001-9436-5833 ; 0000-0003-1638-4291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Shahraeini, Seyed Arash</creatorcontrib><creatorcontrib>Tabrizi, Seyfollah</creatorcontrib><creatorcontrib>Spulbar, Cristi</creatorcontrib><creatorcontrib>Birau, Ramona</creatorcontrib><creatorcontrib>Yazdi, Amir Karbassi</creatorcontrib><creatorcontrib>Islamic Azad University, South Tehran Branch, Tehran, Iran</creatorcontrib><creatorcontrib>"Islamic Azad University, Central Tehran Branch, Tehran, Iran "</creatorcontrib><creatorcontrib>Islamic Azad University, North Tehran Branch, Tehran, Iran</creatorcontrib><creatorcontrib>University of Craiova, Romania</creatorcontrib><title>New Data Mining approach for clustering Export Credit Agencies (ECAs) based on performance criteria: a bibliometric citation analysis for the period 2005 to 2020</title><title>Analele Universității din Craiova. Seria matematică, informatică</title><description>Nowadays, ECAs have a crucial role in the export of production, creating job opportunities for countries and growth of economic indicators.This research aims first to estimate the performance of ECAs based on covering all countries of the world and ranking the countries based on the issue of export credit according to their performance and clustering techniques. For evaluation performance of these ECAs, clustering techniques are used to put them in the categories according to their performance between 2005 to 2020 in the fourth quarter. The context of clustering shows the rank of each cluster, and then exporters can choose a better choice from them. Moreover, for reinsurance,other ECAs can find out which ECAs have high performance. The result indicates that ranking the ECAs and show the performance of each cluster.</description><issn>1223-6934</issn><issn>2246-9958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqVkLtOxDAQRS0EEhFsTTslFMnazoOEbhV2RQMVvTVxnN2RkjiyzWM_hz8lifgBqivNnaMrHcbuBE9yWWbFFgdKPrOSRCLyx-qCRVJmRVxVeXnJIiFlGhdVml2zjffUcF7NDS9FxH7ezBc8Y0B4pZHGI-A0OYv6BJ11oPsPH4xb7vvvyboAtTMtBdgdzajJeLjf1zv_AA1604IdYTJuBgcctQHtaIHxCRAaanqygwmONGgKGGj-xhH7sye_joWTWXCyLUjOcwh2Tslv2VWHvTebv7xh28P-vX6JtbPeO9OpydGA7qwEV6sMNctQqwy1yEj_T_wCz2VqCA</recordid><startdate>20210630</startdate><enddate>20210630</enddate><creator>Shahraeini, Seyed Arash</creator><creator>Tabrizi, Seyfollah</creator><creator>Spulbar, Cristi</creator><creator>Birau, Ramona</creator><creator>Yazdi, Amir Karbassi</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3909-9496</orcidid><orcidid>https://orcid.org/0000-0001-9436-5833</orcidid><orcidid>https://orcid.org/0000-0003-1638-4291</orcidid></search><sort><creationdate>20210630</creationdate><title>New Data Mining approach for clustering Export Credit Agencies (ECAs) based on performance criteria: a bibliometric citation analysis for the period 2005 to 2020</title><author>Shahraeini, Seyed Arash ; Tabrizi, Seyfollah ; Spulbar, Cristi ; Birau, Ramona ; Yazdi, Amir Karbassi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_52846_ami_v48i1_15793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahraeini, Seyed Arash</creatorcontrib><creatorcontrib>Tabrizi, Seyfollah</creatorcontrib><creatorcontrib>Spulbar, Cristi</creatorcontrib><creatorcontrib>Birau, Ramona</creatorcontrib><creatorcontrib>Yazdi, Amir Karbassi</creatorcontrib><creatorcontrib>Islamic Azad University, South Tehran Branch, Tehran, Iran</creatorcontrib><creatorcontrib>"Islamic Azad University, Central Tehran Branch, Tehran, Iran "</creatorcontrib><creatorcontrib>Islamic Azad University, North Tehran Branch, Tehran, Iran</creatorcontrib><creatorcontrib>University of Craiova, Romania</creatorcontrib><collection>CrossRef</collection><jtitle>Analele Universității din Craiova. Seria matematică, informatică</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahraeini, Seyed Arash</au><au>Tabrizi, Seyfollah</au><au>Spulbar, Cristi</au><au>Birau, Ramona</au><au>Yazdi, Amir Karbassi</au><aucorp>Islamic Azad University, South Tehran Branch, Tehran, Iran</aucorp><aucorp>"Islamic Azad University, Central Tehran Branch, Tehran, Iran "</aucorp><aucorp>Islamic Azad University, North Tehran Branch, Tehran, Iran</aucorp><aucorp>University of Craiova, Romania</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Data Mining approach for clustering Export Credit Agencies (ECAs) based on performance criteria: a bibliometric citation analysis for the period 2005 to 2020</atitle><jtitle>Analele Universității din Craiova. Seria matematică, informatică</jtitle><date>2021-06-30</date><risdate>2021</risdate><volume>48</volume><issue>1</issue><spage>374</spage><epage>383</epage><pages>374-383</pages><issn>1223-6934</issn><eissn>2246-9958</eissn><abstract>Nowadays, ECAs have a crucial role in the export of production, creating job opportunities for countries and growth of economic indicators.This research aims first to estimate the performance of ECAs based on covering all countries of the world and ranking the countries based on the issue of export credit according to their performance and clustering techniques. For evaluation performance of these ECAs, clustering techniques are used to put them in the categories according to their performance between 2005 to 2020 in the fourth quarter. The context of clustering shows the rank of each cluster, and then exporters can choose a better choice from them. Moreover, for reinsurance,other ECAs can find out which ECAs have high performance. The result indicates that ranking the ECAs and show the performance of each cluster.</abstract><doi>10.52846/ami.v48i1.1579</doi><orcidid>https://orcid.org/0000-0002-3909-9496</orcidid><orcidid>https://orcid.org/0000-0001-9436-5833</orcidid><orcidid>https://orcid.org/0000-0003-1638-4291</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1223-6934
ispartof Analele Universității din Craiova. Seria matematică, informatică, 2021-06, Vol.48 (1), p.374-383
issn 1223-6934
2246-9958
language eng
recordid cdi_crossref_primary_10_52846_ami_v48i1_1579
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title New Data Mining approach for clustering Export Credit Agencies (ECAs) based on performance criteria: a bibliometric citation analysis for the period 2005 to 2020
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Data%20Mining%20approach%20for%20clustering%20Export%20Credit%20Agencies%20(ECAs)%20based%20on%20performance%20criteria:%20a%20bibliometric%20citation%20analysis%20for%20the%20period%202005%20to%202020&rft.jtitle=Analele%20Universit%C4%83%C8%9Bii%20din%20Craiova.%20Seria%20matematic%C4%83,%20informatic%C4%83&rft.au=Shahraeini,%20Seyed%20Arash&rft.aucorp=Islamic%20Azad%20University,%20South%20Tehran%20Branch,%20Tehran,%20Iran&rft.date=2021-06-30&rft.volume=48&rft.issue=1&rft.spage=374&rft.epage=383&rft.pages=374-383&rft.issn=1223-6934&rft.eissn=2246-9958&rft_id=info:doi/10.52846/ami.v48i1.1579&rft_dat=%3Ccrossref%3E10_52846_ami_v48i1_1579%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true