Exchange variations of generalized dual parallel curves and surfaces

Parallel curves (or offset curves) and parallel surfaces (or offset surfaces) have a big importance for CAD/CAM, robotics, cam design and many industrial applications, especially for mathematical modelling of cutting paths milling machines. Any vector space has a corresponding dual vector space that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analele Universității din Craiova. Seria matematică, informatică informatică, 2021-06, Vol.48 (1), p.258-282
1. Verfasser: Bulut, Vahide
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 1
container_start_page 258
container_title Analele Universității din Craiova. Seria matematică, informatică
container_volume 48
creator Bulut, Vahide
description Parallel curves (or offset curves) and parallel surfaces (or offset surfaces) have a big importance for CAD/CAM, robotics, cam design and many industrial applications, especially for mathematical modelling of cutting paths milling machines. Any vector space has a corresponding dual vector space that consists of all linear functions on vector space. Dual spaces are used in mathematics such as describing measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. This paper proposes a novel definition of generalized and standard dual parallel curves and surfaces. Additionally, we give some properties of generalized dual parallel curves and surfaces using this novel definition. We also express the variation of the generalized dual parallel curves, the first and second variation of area change of the standard dual parallel surfaces and the first variation of area change of the generalized dual parallel surfaces.
doi_str_mv 10.52846/ami.v48i1.1413
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_52846_ami_v48i1_1413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_52846_ami_v48i1_1413</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_52846_ami_v48i1_14133</originalsourceid><addsrcrecordid>eNqVzk0OgjAUBODGaCJR1m57AaAtlcDan3gA980THtikgukTop5eJF7A1WQymeRjbCNFvFW5zhK42XjQuZWx1DKdsUApnUVFsc3nLJBKpVFWpHrJQiJ7EaIYF5HLgO0Pz_IKbYN8AG_hYbuWeFfzBlv04OwbK1714PgdxurQ8bL3AxKHtuLU-xpKpDVb1OAIw1-uWHI8nHenqPQdkcfa3L29gX8ZKczkNaPXTF7z9ab_Pz6XT0qT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exchange variations of generalized dual parallel curves and surfaces</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bulut, Vahide</creator><creatorcontrib>Bulut, Vahide ; Izmir Katip Celebi University, Izmir, Turkey</creatorcontrib><description>Parallel curves (or offset curves) and parallel surfaces (or offset surfaces) have a big importance for CAD/CAM, robotics, cam design and many industrial applications, especially for mathematical modelling of cutting paths milling machines. Any vector space has a corresponding dual vector space that consists of all linear functions on vector space. Dual spaces are used in mathematics such as describing measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. This paper proposes a novel definition of generalized and standard dual parallel curves and surfaces. Additionally, we give some properties of generalized dual parallel curves and surfaces using this novel definition. We also express the variation of the generalized dual parallel curves, the first and second variation of area change of the standard dual parallel surfaces and the first variation of area change of the generalized dual parallel surfaces.</description><identifier>ISSN: 1223-6934</identifier><identifier>EISSN: 2246-9958</identifier><identifier>DOI: 10.52846/ami.v48i1.1413</identifier><language>eng</language><ispartof>Analele Universității din Craiova. Seria matematică, informatică, 2021-06, Vol.48 (1), p.258-282</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_52846_ami_v48i1_14133</cites><orcidid>0000-0002-0786-8860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bulut, Vahide</creatorcontrib><creatorcontrib>Izmir Katip Celebi University, Izmir, Turkey</creatorcontrib><title>Exchange variations of generalized dual parallel curves and surfaces</title><title>Analele Universității din Craiova. Seria matematică, informatică</title><description>Parallel curves (or offset curves) and parallel surfaces (or offset surfaces) have a big importance for CAD/CAM, robotics, cam design and many industrial applications, especially for mathematical modelling of cutting paths milling machines. Any vector space has a corresponding dual vector space that consists of all linear functions on vector space. Dual spaces are used in mathematics such as describing measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. This paper proposes a novel definition of generalized and standard dual parallel curves and surfaces. Additionally, we give some properties of generalized dual parallel curves and surfaces using this novel definition. We also express the variation of the generalized dual parallel curves, the first and second variation of area change of the standard dual parallel surfaces and the first variation of area change of the generalized dual parallel surfaces.</description><issn>1223-6934</issn><issn>2246-9958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqVzk0OgjAUBODGaCJR1m57AaAtlcDan3gA980THtikgukTop5eJF7A1WQymeRjbCNFvFW5zhK42XjQuZWx1DKdsUApnUVFsc3nLJBKpVFWpHrJQiJ7EaIYF5HLgO0Pz_IKbYN8AG_hYbuWeFfzBlv04OwbK1714PgdxurQ8bL3AxKHtuLU-xpKpDVb1OAIw1-uWHI8nHenqPQdkcfa3L29gX8ZKczkNaPXTF7z9ab_Pz6XT0qT</recordid><startdate>20210630</startdate><enddate>20210630</enddate><creator>Bulut, Vahide</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0786-8860</orcidid></search><sort><creationdate>20210630</creationdate><title>Exchange variations of generalized dual parallel curves and surfaces</title><author>Bulut, Vahide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_52846_ami_v48i1_14133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bulut, Vahide</creatorcontrib><creatorcontrib>Izmir Katip Celebi University, Izmir, Turkey</creatorcontrib><collection>CrossRef</collection><jtitle>Analele Universității din Craiova. Seria matematică, informatică</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bulut, Vahide</au><aucorp>Izmir Katip Celebi University, Izmir, Turkey</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exchange variations of generalized dual parallel curves and surfaces</atitle><jtitle>Analele Universității din Craiova. Seria matematică, informatică</jtitle><date>2021-06-30</date><risdate>2021</risdate><volume>48</volume><issue>1</issue><spage>258</spage><epage>282</epage><pages>258-282</pages><issn>1223-6934</issn><eissn>2246-9958</eissn><abstract>Parallel curves (or offset curves) and parallel surfaces (or offset surfaces) have a big importance for CAD/CAM, robotics, cam design and many industrial applications, especially for mathematical modelling of cutting paths milling machines. Any vector space has a corresponding dual vector space that consists of all linear functions on vector space. Dual spaces are used in mathematics such as describing measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. This paper proposes a novel definition of generalized and standard dual parallel curves and surfaces. Additionally, we give some properties of generalized dual parallel curves and surfaces using this novel definition. We also express the variation of the generalized dual parallel curves, the first and second variation of area change of the standard dual parallel surfaces and the first variation of area change of the generalized dual parallel surfaces.</abstract><doi>10.52846/ami.v48i1.1413</doi><orcidid>https://orcid.org/0000-0002-0786-8860</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1223-6934
ispartof Analele Universității din Craiova. Seria matematică, informatică, 2021-06, Vol.48 (1), p.258-282
issn 1223-6934
2246-9958
language eng
recordid cdi_crossref_primary_10_52846_ami_v48i1_1413
source EZB-FREE-00999 freely available EZB journals
title Exchange variations of generalized dual parallel curves and surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exchange%20variations%20of%20generalized%20dual%20parallel%20curves%20and%20surfaces&rft.jtitle=Analele%20Universit%C4%83%C8%9Bii%20din%20Craiova.%20Seria%20matematic%C4%83,%20informatic%C4%83&rft.au=Bulut,%20Vahide&rft.aucorp=Izmir%20Katip%20Celebi%20University,%20Izmir,%20Turkey&rft.date=2021-06-30&rft.volume=48&rft.issue=1&rft.spage=258&rft.epage=282&rft.pages=258-282&rft.issn=1223-6934&rft.eissn=2246-9958&rft_id=info:doi/10.52846/ami.v48i1.1413&rft_dat=%3Ccrossref%3E10_52846_ami_v48i1_1413%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true