Exchange variations of generalized dual parallel curves and surfaces
Parallel curves (or offset curves) and parallel surfaces (or offset surfaces) have a big importance for CAD/CAM, robotics, cam design and many industrial applications, especially for mathematical modelling of cutting paths milling machines. Any vector space has a corresponding dual vector space that...
Gespeichert in:
Veröffentlicht in: | Analele Universității din Craiova. Seria matematică, informatică informatică, 2021-06, Vol.48 (1), p.258-282 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 282 |
---|---|
container_issue | 1 |
container_start_page | 258 |
container_title | Analele Universității din Craiova. Seria matematică, informatică |
container_volume | 48 |
creator | Bulut, Vahide |
description | Parallel curves (or offset curves) and parallel surfaces (or offset surfaces) have a big importance for CAD/CAM, robotics, cam design and many industrial applications, especially for mathematical modelling of cutting paths milling machines. Any vector space has a corresponding dual vector space that consists of all linear functions on vector space. Dual spaces are used in mathematics such as describing measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. This paper proposes a novel definition of generalized and standard dual parallel curves and surfaces. Additionally, we give some properties of generalized dual parallel curves and surfaces using this novel definition. We also express the variation of the generalized dual parallel curves, the first and second variation of area change of the standard dual parallel surfaces and the first variation of area change of the generalized dual parallel surfaces. |
doi_str_mv | 10.52846/ami.v48i1.1413 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_52846_ami_v48i1_1413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_52846_ami_v48i1_1413</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_52846_ami_v48i1_14133</originalsourceid><addsrcrecordid>eNqVzk0OgjAUBODGaCJR1m57AaAtlcDan3gA980THtikgukTop5eJF7A1WQymeRjbCNFvFW5zhK42XjQuZWx1DKdsUApnUVFsc3nLJBKpVFWpHrJQiJ7EaIYF5HLgO0Pz_IKbYN8AG_hYbuWeFfzBlv04OwbK1714PgdxurQ8bL3AxKHtuLU-xpKpDVb1OAIw1-uWHI8nHenqPQdkcfa3L29gX8ZKczkNaPXTF7z9ab_Pz6XT0qT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exchange variations of generalized dual parallel curves and surfaces</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bulut, Vahide</creator><creatorcontrib>Bulut, Vahide ; Izmir Katip Celebi University, Izmir, Turkey</creatorcontrib><description>Parallel curves (or offset curves) and parallel surfaces (or offset surfaces) have a big importance for CAD/CAM, robotics, cam design and many industrial applications, especially for mathematical modelling of cutting paths milling machines. Any vector space has a corresponding dual vector space that consists of all linear functions on vector space. Dual spaces are used in mathematics such as describing measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. This paper proposes a novel definition of generalized and standard dual parallel curves and surfaces. Additionally, we give some properties of generalized dual parallel curves and surfaces using this novel definition. We also express the variation of the generalized dual parallel curves, the first and second variation of area change of the standard dual parallel surfaces and the first variation of area change of the generalized dual parallel surfaces.</description><identifier>ISSN: 1223-6934</identifier><identifier>EISSN: 2246-9958</identifier><identifier>DOI: 10.52846/ami.v48i1.1413</identifier><language>eng</language><ispartof>Analele Universității din Craiova. Seria matematică, informatică, 2021-06, Vol.48 (1), p.258-282</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_52846_ami_v48i1_14133</cites><orcidid>0000-0002-0786-8860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bulut, Vahide</creatorcontrib><creatorcontrib>Izmir Katip Celebi University, Izmir, Turkey</creatorcontrib><title>Exchange variations of generalized dual parallel curves and surfaces</title><title>Analele Universității din Craiova. Seria matematică, informatică</title><description>Parallel curves (or offset curves) and parallel surfaces (or offset surfaces) have a big importance for CAD/CAM, robotics, cam design and many industrial applications, especially for mathematical modelling of cutting paths milling machines. Any vector space has a corresponding dual vector space that consists of all linear functions on vector space. Dual spaces are used in mathematics such as describing measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. This paper proposes a novel definition of generalized and standard dual parallel curves and surfaces. Additionally, we give some properties of generalized dual parallel curves and surfaces using this novel definition. We also express the variation of the generalized dual parallel curves, the first and second variation of area change of the standard dual parallel surfaces and the first variation of area change of the generalized dual parallel surfaces.</description><issn>1223-6934</issn><issn>2246-9958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqVzk0OgjAUBODGaCJR1m57AaAtlcDan3gA980THtikgukTop5eJF7A1WQymeRjbCNFvFW5zhK42XjQuZWx1DKdsUApnUVFsc3nLJBKpVFWpHrJQiJ7EaIYF5HLgO0Pz_IKbYN8AG_hYbuWeFfzBlv04OwbK1714PgdxurQ8bL3AxKHtuLU-xpKpDVb1OAIw1-uWHI8nHenqPQdkcfa3L29gX8ZKczkNaPXTF7z9ab_Pz6XT0qT</recordid><startdate>20210630</startdate><enddate>20210630</enddate><creator>Bulut, Vahide</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0786-8860</orcidid></search><sort><creationdate>20210630</creationdate><title>Exchange variations of generalized dual parallel curves and surfaces</title><author>Bulut, Vahide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_52846_ami_v48i1_14133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bulut, Vahide</creatorcontrib><creatorcontrib>Izmir Katip Celebi University, Izmir, Turkey</creatorcontrib><collection>CrossRef</collection><jtitle>Analele Universității din Craiova. Seria matematică, informatică</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bulut, Vahide</au><aucorp>Izmir Katip Celebi University, Izmir, Turkey</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exchange variations of generalized dual parallel curves and surfaces</atitle><jtitle>Analele Universității din Craiova. Seria matematică, informatică</jtitle><date>2021-06-30</date><risdate>2021</risdate><volume>48</volume><issue>1</issue><spage>258</spage><epage>282</epage><pages>258-282</pages><issn>1223-6934</issn><eissn>2246-9958</eissn><abstract>Parallel curves (or offset curves) and parallel surfaces (or offset surfaces) have a big importance for CAD/CAM, robotics, cam design and many industrial applications, especially for mathematical modelling of cutting paths milling machines. Any vector space has a corresponding dual vector space that consists of all linear functions on vector space. Dual spaces are used in mathematics such as describing measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. This paper proposes a novel definition of generalized and standard dual parallel curves and surfaces. Additionally, we give some properties of generalized dual parallel curves and surfaces using this novel definition. We also express the variation of the generalized dual parallel curves, the first and second variation of area change of the standard dual parallel surfaces and the first variation of area change of the generalized dual parallel surfaces.</abstract><doi>10.52846/ami.v48i1.1413</doi><orcidid>https://orcid.org/0000-0002-0786-8860</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1223-6934 |
ispartof | Analele Universității din Craiova. Seria matematică, informatică, 2021-06, Vol.48 (1), p.258-282 |
issn | 1223-6934 2246-9958 |
language | eng |
recordid | cdi_crossref_primary_10_52846_ami_v48i1_1413 |
source | EZB-FREE-00999 freely available EZB journals |
title | Exchange variations of generalized dual parallel curves and surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exchange%20variations%20of%20generalized%20dual%20parallel%20curves%20and%20surfaces&rft.jtitle=Analele%20Universit%C4%83%C8%9Bii%20din%20Craiova.%20Seria%20matematic%C4%83,%20informatic%C4%83&rft.au=Bulut,%20Vahide&rft.aucorp=Izmir%20Katip%20Celebi%20University,%20Izmir,%20Turkey&rft.date=2021-06-30&rft.volume=48&rft.issue=1&rft.spage=258&rft.epage=282&rft.pages=258-282&rft.issn=1223-6934&rft.eissn=2246-9958&rft_id=info:doi/10.52846/ami.v48i1.1413&rft_dat=%3Ccrossref%3E10_52846_ami_v48i1_1413%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |