Influence of Temperature on Properties and Dynamics of Gas-Solid Flow in Fluidized-Particle Tubular Solar Receiver

A fluidized particle single-tube solar receiver has been tested for investigating the gas-particle characteristics that enable the best operating conditions in a commercial-scale plant. The principle of the solar receiver is to fluidize the particles in a vessel – the dispenser – in which the receiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SolarPACES Conference Proceedings 2024-03, Vol.1
Hauptverfasser: Gueguen, Ronny, Sahuquet, Guillaume, Sans, Jean-Louis, Mer, Samuel, Toutant, Adrien, Bataille, Françoise, Flamant, Gilles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title SolarPACES Conference Proceedings
container_volume 1
creator Gueguen, Ronny
Sahuquet, Guillaume
Sans, Jean-Louis
Mer, Samuel
Toutant, Adrien
Bataille, Françoise
Flamant, Gilles
description A fluidized particle single-tube solar receiver has been tested for investigating the gas-particle characteristics that enable the best operating conditions in a commercial-scale plant. The principle of the solar receiver is to fluidize the particles in a vessel – the dispenser – in which the receiver tube is plunged. The particles are flowing upward in the tube, irradiated over 1-meter height, by applying an overpressure in the dispenser. Experiments with a concentrated solar flux varying between 188 and 358 kW/m² are carried out, and the particle mass flux varied from 0 to 72 kg/(m²s). The mean particles and external tube wall temperatures in the irradiated zone are heated from the ambient to respectively 700°C and 940°C. It is shown that the temperature rise leads to a decrease of the particle volume fraction. Furthermore, a self-regulation of the system is evidenced with a short transient regime. This characteristic is essential from the operational viewpoint. The thermal efficiency of the receiver increases with the particle flow rate, reaching between 60 and 75% above 30 kg/(m²s). Several fluidization regimes are identified thanks to pressure signal analyses, like slugging, turbulent and fast fluidization, showing that regimes transitions are strongly affected by the temperature.
doi_str_mv 10.52825/solarpaces.v1i.714
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_52825_solarpaces_v1i_714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1b1e93d04e614f69a10b907978b31ae2</doaj_id><sourcerecordid>oai_doaj_org_article_1b1e93d04e614f69a10b907978b31ae2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-3c903d2d68f92eea0a73af9e216563afb4a5c89f7f2a0b5fea5335b7cb9947853</originalsourceid><addsrcrecordid>eNpNkV9LwzAUxYsoOHSfwJd8gc6kadrmUaabg4HDzedwm95IRteMZJ3MT2_2B_XpnnO593DglyQPjI5EVmXiMbgW_BY0htGe2VHJ8qtkkJWCpbKS8vqfvk2GIawppZwzLqt8kPhZZ9oeO43EGbLCzRY97HofbUcW3kW7sxgIdA15PnSwsTocL6cQ0qVrbUMmrfsitouzt439xiZdQPzRLZJVX_exGlkeC5J31Gj36O-TGwNtwOFl3iUfk5fV-DWdv01n46d5qpkUu5RrSXmTNUVlZIYIFEoORmLGClFEVecgdCVNaTKgtTAIgnNRl7qWMi8rwe-S2Tm3cbBWW2834A_KgVWnhfOf6lJUsZqh5A3NsWC5KSQwWktayrKqOQPMYhY_Z2nvQvBofvMYVScK6o-CihRUpMB_AEoegAE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of Temperature on Properties and Dynamics of Gas-Solid Flow in Fluidized-Particle Tubular Solar Receiver</title><source>DOAJ Directory of Open Access Journals</source><creator>Gueguen, Ronny ; Sahuquet, Guillaume ; Sans, Jean-Louis ; Mer, Samuel ; Toutant, Adrien ; Bataille, Françoise ; Flamant, Gilles</creator><creatorcontrib>Gueguen, Ronny ; Sahuquet, Guillaume ; Sans, Jean-Louis ; Mer, Samuel ; Toutant, Adrien ; Bataille, Françoise ; Flamant, Gilles</creatorcontrib><description>A fluidized particle single-tube solar receiver has been tested for investigating the gas-particle characteristics that enable the best operating conditions in a commercial-scale plant. The principle of the solar receiver is to fluidize the particles in a vessel – the dispenser – in which the receiver tube is plunged. The particles are flowing upward in the tube, irradiated over 1-meter height, by applying an overpressure in the dispenser. Experiments with a concentrated solar flux varying between 188 and 358 kW/m² are carried out, and the particle mass flux varied from 0 to 72 kg/(m²s). The mean particles and external tube wall temperatures in the irradiated zone are heated from the ambient to respectively 700°C and 940°C. It is shown that the temperature rise leads to a decrease of the particle volume fraction. Furthermore, a self-regulation of the system is evidenced with a short transient regime. This characteristic is essential from the operational viewpoint. The thermal efficiency of the receiver increases with the particle flow rate, reaching between 60 and 75% above 30 kg/(m²s). Several fluidization regimes are identified thanks to pressure signal analyses, like slugging, turbulent and fast fluidization, showing that regimes transitions are strongly affected by the temperature.</description><identifier>ISSN: 2751-9899</identifier><identifier>EISSN: 2751-9899</identifier><identifier>DOI: 10.52825/solarpaces.v1i.714</identifier><language>eng</language><publisher>TIB Open Publishing</publisher><subject>Concentrated Solar Power ; Fluidized Particles ; Particles Solar Receiver</subject><ispartof>SolarPACES Conference Proceedings, 2024-03, Vol.1</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c195t-3c903d2d68f92eea0a73af9e216563afb4a5c89f7f2a0b5fea5335b7cb9947853</cites><orcidid>0000-0003-4562-8515 ; 0000-0001-7915-3146 ; 0000-0003-4470-8636 ; 0000-0002-5236-8638 ; 0000-0003-0275-2890 ; 0000-0002-7156-1732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2101,27923,27924</link.rule.ids></links><search><creatorcontrib>Gueguen, Ronny</creatorcontrib><creatorcontrib>Sahuquet, Guillaume</creatorcontrib><creatorcontrib>Sans, Jean-Louis</creatorcontrib><creatorcontrib>Mer, Samuel</creatorcontrib><creatorcontrib>Toutant, Adrien</creatorcontrib><creatorcontrib>Bataille, Françoise</creatorcontrib><creatorcontrib>Flamant, Gilles</creatorcontrib><title>Influence of Temperature on Properties and Dynamics of Gas-Solid Flow in Fluidized-Particle Tubular Solar Receiver</title><title>SolarPACES Conference Proceedings</title><description>A fluidized particle single-tube solar receiver has been tested for investigating the gas-particle characteristics that enable the best operating conditions in a commercial-scale plant. The principle of the solar receiver is to fluidize the particles in a vessel – the dispenser – in which the receiver tube is plunged. The particles are flowing upward in the tube, irradiated over 1-meter height, by applying an overpressure in the dispenser. Experiments with a concentrated solar flux varying between 188 and 358 kW/m² are carried out, and the particle mass flux varied from 0 to 72 kg/(m²s). The mean particles and external tube wall temperatures in the irradiated zone are heated from the ambient to respectively 700°C and 940°C. It is shown that the temperature rise leads to a decrease of the particle volume fraction. Furthermore, a self-regulation of the system is evidenced with a short transient regime. This characteristic is essential from the operational viewpoint. The thermal efficiency of the receiver increases with the particle flow rate, reaching between 60 and 75% above 30 kg/(m²s). Several fluidization regimes are identified thanks to pressure signal analyses, like slugging, turbulent and fast fluidization, showing that regimes transitions are strongly affected by the temperature.</description><subject>Concentrated Solar Power</subject><subject>Fluidized Particles</subject><subject>Particles Solar Receiver</subject><issn>2751-9899</issn><issn>2751-9899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkV9LwzAUxYsoOHSfwJd8gc6kadrmUaabg4HDzedwm95IRteMZJ3MT2_2B_XpnnO593DglyQPjI5EVmXiMbgW_BY0htGe2VHJ8qtkkJWCpbKS8vqfvk2GIawppZwzLqt8kPhZZ9oeO43EGbLCzRY97HofbUcW3kW7sxgIdA15PnSwsTocL6cQ0qVrbUMmrfsitouzt439xiZdQPzRLZJVX_exGlkeC5J31Gj36O-TGwNtwOFl3iUfk5fV-DWdv01n46d5qpkUu5RrSXmTNUVlZIYIFEoORmLGClFEVecgdCVNaTKgtTAIgnNRl7qWMi8rwe-S2Tm3cbBWW2834A_KgVWnhfOf6lJUsZqh5A3NsWC5KSQwWktayrKqOQPMYhY_Z2nvQvBofvMYVScK6o-CihRUpMB_AEoegAE</recordid><startdate>20240319</startdate><enddate>20240319</enddate><creator>Gueguen, Ronny</creator><creator>Sahuquet, Guillaume</creator><creator>Sans, Jean-Louis</creator><creator>Mer, Samuel</creator><creator>Toutant, Adrien</creator><creator>Bataille, Françoise</creator><creator>Flamant, Gilles</creator><general>TIB Open Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4562-8515</orcidid><orcidid>https://orcid.org/0000-0001-7915-3146</orcidid><orcidid>https://orcid.org/0000-0003-4470-8636</orcidid><orcidid>https://orcid.org/0000-0002-5236-8638</orcidid><orcidid>https://orcid.org/0000-0003-0275-2890</orcidid><orcidid>https://orcid.org/0000-0002-7156-1732</orcidid></search><sort><creationdate>20240319</creationdate><title>Influence of Temperature on Properties and Dynamics of Gas-Solid Flow in Fluidized-Particle Tubular Solar Receiver</title><author>Gueguen, Ronny ; Sahuquet, Guillaume ; Sans, Jean-Louis ; Mer, Samuel ; Toutant, Adrien ; Bataille, Françoise ; Flamant, Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-3c903d2d68f92eea0a73af9e216563afb4a5c89f7f2a0b5fea5335b7cb9947853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Concentrated Solar Power</topic><topic>Fluidized Particles</topic><topic>Particles Solar Receiver</topic><toplevel>online_resources</toplevel><creatorcontrib>Gueguen, Ronny</creatorcontrib><creatorcontrib>Sahuquet, Guillaume</creatorcontrib><creatorcontrib>Sans, Jean-Louis</creatorcontrib><creatorcontrib>Mer, Samuel</creatorcontrib><creatorcontrib>Toutant, Adrien</creatorcontrib><creatorcontrib>Bataille, Françoise</creatorcontrib><creatorcontrib>Flamant, Gilles</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>SolarPACES Conference Proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gueguen, Ronny</au><au>Sahuquet, Guillaume</au><au>Sans, Jean-Louis</au><au>Mer, Samuel</au><au>Toutant, Adrien</au><au>Bataille, Françoise</au><au>Flamant, Gilles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Temperature on Properties and Dynamics of Gas-Solid Flow in Fluidized-Particle Tubular Solar Receiver</atitle><jtitle>SolarPACES Conference Proceedings</jtitle><date>2024-03-19</date><risdate>2024</risdate><volume>1</volume><issn>2751-9899</issn><eissn>2751-9899</eissn><abstract>A fluidized particle single-tube solar receiver has been tested for investigating the gas-particle characteristics that enable the best operating conditions in a commercial-scale plant. The principle of the solar receiver is to fluidize the particles in a vessel – the dispenser – in which the receiver tube is plunged. The particles are flowing upward in the tube, irradiated over 1-meter height, by applying an overpressure in the dispenser. Experiments with a concentrated solar flux varying between 188 and 358 kW/m² are carried out, and the particle mass flux varied from 0 to 72 kg/(m²s). The mean particles and external tube wall temperatures in the irradiated zone are heated from the ambient to respectively 700°C and 940°C. It is shown that the temperature rise leads to a decrease of the particle volume fraction. Furthermore, a self-regulation of the system is evidenced with a short transient regime. This characteristic is essential from the operational viewpoint. The thermal efficiency of the receiver increases with the particle flow rate, reaching between 60 and 75% above 30 kg/(m²s). Several fluidization regimes are identified thanks to pressure signal analyses, like slugging, turbulent and fast fluidization, showing that regimes transitions are strongly affected by the temperature.</abstract><pub>TIB Open Publishing</pub><doi>10.52825/solarpaces.v1i.714</doi><orcidid>https://orcid.org/0000-0003-4562-8515</orcidid><orcidid>https://orcid.org/0000-0001-7915-3146</orcidid><orcidid>https://orcid.org/0000-0003-4470-8636</orcidid><orcidid>https://orcid.org/0000-0002-5236-8638</orcidid><orcidid>https://orcid.org/0000-0003-0275-2890</orcidid><orcidid>https://orcid.org/0000-0002-7156-1732</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2751-9899
ispartof SolarPACES Conference Proceedings, 2024-03, Vol.1
issn 2751-9899
2751-9899
language eng
recordid cdi_crossref_primary_10_52825_solarpaces_v1i_714
source DOAJ Directory of Open Access Journals
subjects Concentrated Solar Power
Fluidized Particles
Particles Solar Receiver
title Influence of Temperature on Properties and Dynamics of Gas-Solid Flow in Fluidized-Particle Tubular Solar Receiver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Temperature%20on%20Properties%20and%20Dynamics%20of%20Gas-Solid%20Flow%20in%20Fluidized-Particle%20Tubular%20Solar%20Receiver&rft.jtitle=SolarPACES%20Conference%20Proceedings&rft.au=Gueguen,%20Ronny&rft.date=2024-03-19&rft.volume=1&rft.issn=2751-9899&rft.eissn=2751-9899&rft_id=info:doi/10.52825/solarpaces.v1i.714&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1b1e93d04e614f69a10b907978b31ae2%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_1b1e93d04e614f69a10b907978b31ae2&rfr_iscdi=true