On the extremal solutions of superlinear Helmholtz problems

In this note, we deal with the Helmholtz equation −∆u+cu = λf(u) with Dirichlet boundary condition in a smooth bounded domain Ω of R n , n > 1. The nonlinearity is superlinear that is limt−→∞ f(t) t = ∞ and f is a positive, convexe and C 2 function defined on [0,∞). We establish existence of regu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Paranaense de Matemática 2022-01, Vol.40, p.1-8
Hauptverfasser: Dammak, Makkia, El Ghord, Majdi, Kharrati, Saber Ali
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title Boletim da Sociedade Paranaense de Matemática
container_volume 40
creator Dammak, Makkia
El Ghord, Majdi
Kharrati, Saber Ali
description In this note, we deal with the Helmholtz equation −∆u+cu = λf(u) with Dirichlet boundary condition in a smooth bounded domain Ω of R n , n > 1. The nonlinearity is superlinear that is limt−→∞ f(t) t = ∞ and f is a positive, convexe and C 2 function defined on [0,∞). We establish existence of regular solutions for λ small enough and the bifurcation phenomena. We prove the existence of critical value λ ∗ such that the problem does not have solution for λ > λ∗ even in the weak sense. We also prove the existence of a type of stable solutions u ∗ called extremal solutions. We prove that for f(t) = e t , Ω = B1 and n ≤ 9, u ∗ is regular.
doi_str_mv 10.5269/bspm.42087
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_5269_bspm_42087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5269_bspm_42087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c120t-a13b0d3b87e9e2e8545299346bfddbcfbfcce2563472b5db4eb9b222c0ff0f203</originalsourceid><addsrcrecordid>eNotz09LwzAYgPEgCpa5i58gZ6HzzZukSfAkQ91gsIueS9O-YYX0D0kH6qeXqafn9sCPsXsBG42Ve_R5HjYKwZorVqAwuhTC2mtWAEhTWiPwlq1z7j2AA2WFw4I9HUe-nIjT55JoaCLPUzwv_TRmPgWezzOl2I_UJL6jOJymuHzzOU0-0pDv2E1oYqb1f1fs4_XlfbsrD8e3_fb5ULYCYSkbIT100ltDjpCsVhqdk6ryoet8G3xoW0JdSWXQ684r8s4jYgshQECQK_bw923TlHOiUM-pH5r0VQuoL_L6Iq9_5fIHMvxNoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the extremal solutions of superlinear Helmholtz problems</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dammak, Makkia ; El Ghord, Majdi ; Kharrati, Saber Ali</creator><creatorcontrib>Dammak, Makkia ; El Ghord, Majdi ; Kharrati, Saber Ali</creatorcontrib><description>In this note, we deal with the Helmholtz equation −∆u+cu = λf(u) with Dirichlet boundary condition in a smooth bounded domain Ω of R n , n &gt; 1. The nonlinearity is superlinear that is limt−→∞ f(t) t = ∞ and f is a positive, convexe and C 2 function defined on [0,∞). We establish existence of regular solutions for λ small enough and the bifurcation phenomena. We prove the existence of critical value λ ∗ such that the problem does not have solution for λ &gt; λ∗ even in the weak sense. We also prove the existence of a type of stable solutions u ∗ called extremal solutions. We prove that for f(t) = e t , Ω = B1 and n ≤ 9, u ∗ is regular.</description><identifier>ISSN: 0037-8712</identifier><identifier>EISSN: 2175-1188</identifier><identifier>DOI: 10.5269/bspm.42087</identifier><language>eng</language><ispartof>Boletim da Sociedade Paranaense de Matemática, 2022-01, Vol.40, p.1-8</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c120t-a13b0d3b87e9e2e8545299346bfddbcfbfcce2563472b5db4eb9b222c0ff0f203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27929,27930</link.rule.ids></links><search><creatorcontrib>Dammak, Makkia</creatorcontrib><creatorcontrib>El Ghord, Majdi</creatorcontrib><creatorcontrib>Kharrati, Saber Ali</creatorcontrib><title>On the extremal solutions of superlinear Helmholtz problems</title><title>Boletim da Sociedade Paranaense de Matemática</title><description>In this note, we deal with the Helmholtz equation −∆u+cu = λf(u) with Dirichlet boundary condition in a smooth bounded domain Ω of R n , n &gt; 1. The nonlinearity is superlinear that is limt−→∞ f(t) t = ∞ and f is a positive, convexe and C 2 function defined on [0,∞). We establish existence of regular solutions for λ small enough and the bifurcation phenomena. We prove the existence of critical value λ ∗ such that the problem does not have solution for λ &gt; λ∗ even in the weak sense. We also prove the existence of a type of stable solutions u ∗ called extremal solutions. We prove that for f(t) = e t , Ω = B1 and n ≤ 9, u ∗ is regular.</description><issn>0037-8712</issn><issn>2175-1188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotz09LwzAYgPEgCpa5i58gZ6HzzZukSfAkQ91gsIueS9O-YYX0D0kH6qeXqafn9sCPsXsBG42Ve_R5HjYKwZorVqAwuhTC2mtWAEhTWiPwlq1z7j2AA2WFw4I9HUe-nIjT55JoaCLPUzwv_TRmPgWezzOl2I_UJL6jOJymuHzzOU0-0pDv2E1oYqb1f1fs4_XlfbsrD8e3_fb5ULYCYSkbIT100ltDjpCsVhqdk6ryoet8G3xoW0JdSWXQ684r8s4jYgshQECQK_bw923TlHOiUM-pH5r0VQuoL_L6Iq9_5fIHMvxNoA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Dammak, Makkia</creator><creator>El Ghord, Majdi</creator><creator>Kharrati, Saber Ali</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220101</creationdate><title>On the extremal solutions of superlinear Helmholtz problems</title><author>Dammak, Makkia ; El Ghord, Majdi ; Kharrati, Saber Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c120t-a13b0d3b87e9e2e8545299346bfddbcfbfcce2563472b5db4eb9b222c0ff0f203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dammak, Makkia</creatorcontrib><creatorcontrib>El Ghord, Majdi</creatorcontrib><creatorcontrib>Kharrati, Saber Ali</creatorcontrib><collection>CrossRef</collection><jtitle>Boletim da Sociedade Paranaense de Matemática</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dammak, Makkia</au><au>El Ghord, Majdi</au><au>Kharrati, Saber Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the extremal solutions of superlinear Helmholtz problems</atitle><jtitle>Boletim da Sociedade Paranaense de Matemática</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>40</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0037-8712</issn><eissn>2175-1188</eissn><abstract>In this note, we deal with the Helmholtz equation −∆u+cu = λf(u) with Dirichlet boundary condition in a smooth bounded domain Ω of R n , n &gt; 1. The nonlinearity is superlinear that is limt−→∞ f(t) t = ∞ and f is a positive, convexe and C 2 function defined on [0,∞). We establish existence of regular solutions for λ small enough and the bifurcation phenomena. We prove the existence of critical value λ ∗ such that the problem does not have solution for λ &gt; λ∗ even in the weak sense. We also prove the existence of a type of stable solutions u ∗ called extremal solutions. We prove that for f(t) = e t , Ω = B1 and n ≤ 9, u ∗ is regular.</abstract><doi>10.5269/bspm.42087</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0037-8712
ispartof Boletim da Sociedade Paranaense de Matemática, 2022-01, Vol.40, p.1-8
issn 0037-8712
2175-1188
language eng
recordid cdi_crossref_primary_10_5269_bspm_42087
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title On the extremal solutions of superlinear Helmholtz problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20extremal%20solutions%20of%20superlinear%20Helmholtz%20problems&rft.jtitle=Boletim%20da%20Sociedade%20Paranaense%20de%20Matem%C3%A1tica&rft.au=Dammak,%20Makkia&rft.date=2022-01-01&rft.volume=40&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0037-8712&rft.eissn=2175-1188&rft_id=info:doi/10.5269/bspm.42087&rft_dat=%3Ccrossref%3E10_5269_bspm_42087%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true