A new inverse Weibull distribution : properties, classical and Bayesian estimation with applications
This article proposes a new extension of the inverse Weibull distribution called, logarithmic transformed inverse Weibull distribution which can provide better fits than some of its well-known extensions. The proposed distribution contains inverse Weibull, inverse Rayleigh, inverse exponential, loga...
Gespeichert in:
Veröffentlicht in: | Kuwait journal of science 2021-07, Vol.48 (3), p.1-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Kuwait journal of science |
container_volume | 48 |
creator | Afify, Ahmed Z. Nassar, Mazin Shawqi, Ahmad I. |
description | This article proposes a new extension of the inverse Weibull distribution called, logarithmic transformed inverse Weibull distribution which can provide better fits than some of its well-known extensions. The proposed distribution contains inverse Weibull, inverse Rayleigh, inverse exponential, logarithmic transformed inverse Rayleigh and logarithmic transformed inverse exponential distributions as special sub-models. Our main focus is to derive some of its mathematical properties along with the estimation of its unknown parameters using frequentist and Bayesian estimation methods. We compare the performances of the proposed estimators using extensive numerical simulations for both small and large samples. The importance and potentiality of this distribution is analyzed via two real data sets |
doi_str_mv | 10.48129/kjs.v48i3.9896 |
format | Article |
fullrecord | <record><control><sourceid>emarefa_cross</sourceid><recordid>TN_cdi_crossref_primary_10_48129_kjs_v48i3_9896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1503279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-eb40786499c5058e2ff6b8b083cdf9c874d7a6d740c29a115e48815bd92e27e63</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRsNSevcn-ANPuV_bDWy1WhYIXxWPYbCa4NaZhJ7b035u2oqd5GZ53GB5CrjmbKsuFm32ucbpVNsqps06fkZGQzGSKc33-l5m9JBPENWOMSyV4bkakmtMWdjS2W0gI9B1i-d00tIrYpyH2cdPSO9qlTQepj4C3NDQeMQbfUN9W9N7vAaNvKWAfv_yR38X-g_quawbqsMArclH7BmHyO8fkbfnwunjKVi-Pz4v5KgtCqz6DUjFjtXIu5Cy3IOpal7ZkVoaqdsEaVRmvK6NYEM5znoOyludl5QQIA1qOyex0N6QNYoK66NLwVNoXnBVHT8XgqTh6Kg6ehsbNqQEDBrX_L-RMCuPkD1TraCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A new inverse Weibull distribution : properties, classical and Bayesian estimation with applications</title><source>Alma/SFX Local Collection</source><creator>Afify, Ahmed Z. ; Nassar, Mazin ; Shawqi, Ahmad I.</creator><creatorcontrib>Afify, Ahmed Z. ; Nassar, Mazin ; Shawqi, Ahmad I. ; Dept. of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt ; Dept. of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia ; Dept. of Statistics, Faculty of Commerce, Zagazig University, Egypt</creatorcontrib><description>This article proposes a new extension of the inverse Weibull distribution called, logarithmic transformed inverse Weibull distribution which can provide better fits than some of its well-known extensions. The proposed distribution contains inverse Weibull, inverse Rayleigh, inverse exponential, logarithmic transformed inverse Rayleigh and logarithmic transformed inverse exponential distributions as special sub-models. Our main focus is to derive some of its mathematical properties along with the estimation of its unknown parameters using frequentist and Bayesian estimation methods. We compare the performances of the proposed estimators using extensive numerical simulations for both small and large samples. The importance and potentiality of this distribution is analyzed via two real data sets</description><identifier>ISSN: 2307-4108</identifier><identifier>EISSN: 2307-4116</identifier><identifier>DOI: 10.48129/kjs.v48i3.9896</identifier><language>eng</language><publisher>Kuwait: Kuwait University, Academic Publication Council</publisher><ispartof>Kuwait journal of science, 2021-07, Vol.48 (3), p.1-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-eb40786499c5058e2ff6b8b083cdf9c874d7a6d740c29a115e48815bd92e27e63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Afify, Ahmed Z.</creatorcontrib><creatorcontrib>Nassar, Mazin</creatorcontrib><creatorcontrib>Shawqi, Ahmad I.</creatorcontrib><creatorcontrib>Dept. of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt</creatorcontrib><creatorcontrib>Dept. of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia</creatorcontrib><creatorcontrib>Dept. of Statistics, Faculty of Commerce, Zagazig University, Egypt</creatorcontrib><title>A new inverse Weibull distribution : properties, classical and Bayesian estimation with applications</title><title>Kuwait journal of science</title><description>This article proposes a new extension of the inverse Weibull distribution called, logarithmic transformed inverse Weibull distribution which can provide better fits than some of its well-known extensions. The proposed distribution contains inverse Weibull, inverse Rayleigh, inverse exponential, logarithmic transformed inverse Rayleigh and logarithmic transformed inverse exponential distributions as special sub-models. Our main focus is to derive some of its mathematical properties along with the estimation of its unknown parameters using frequentist and Bayesian estimation methods. We compare the performances of the proposed estimators using extensive numerical simulations for both small and large samples. The importance and potentiality of this distribution is analyzed via two real data sets</description><issn>2307-4108</issn><issn>2307-4116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AQhhdRsNSevcn-ANPuV_bDWy1WhYIXxWPYbCa4NaZhJ7b035u2oqd5GZ53GB5CrjmbKsuFm32ucbpVNsqps06fkZGQzGSKc33-l5m9JBPENWOMSyV4bkakmtMWdjS2W0gI9B1i-d00tIrYpyH2cdPSO9qlTQepj4C3NDQeMQbfUN9W9N7vAaNvKWAfv_yR38X-g_quawbqsMArclH7BmHyO8fkbfnwunjKVi-Pz4v5KgtCqz6DUjFjtXIu5Cy3IOpal7ZkVoaqdsEaVRmvK6NYEM5znoOyludl5QQIA1qOyex0N6QNYoK66NLwVNoXnBVHT8XgqTh6Kg6ehsbNqQEDBrX_L-RMCuPkD1TraCM</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Afify, Ahmed Z.</creator><creator>Nassar, Mazin</creator><creator>Shawqi, Ahmad I.</creator><general>Kuwait University, Academic Publication Council</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210701</creationdate><title>A new inverse Weibull distribution : properties, classical and Bayesian estimation with applications</title><author>Afify, Ahmed Z. ; Nassar, Mazin ; Shawqi, Ahmad I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-eb40786499c5058e2ff6b8b083cdf9c874d7a6d740c29a115e48815bd92e27e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afify, Ahmed Z.</creatorcontrib><creatorcontrib>Nassar, Mazin</creatorcontrib><creatorcontrib>Shawqi, Ahmad I.</creatorcontrib><creatorcontrib>Dept. of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt</creatorcontrib><creatorcontrib>Dept. of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia</creatorcontrib><creatorcontrib>Dept. of Statistics, Faculty of Commerce, Zagazig University, Egypt</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>CrossRef</collection><jtitle>Kuwait journal of science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afify, Ahmed Z.</au><au>Nassar, Mazin</au><au>Shawqi, Ahmad I.</au><aucorp>Dept. of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt</aucorp><aucorp>Dept. of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia</aucorp><aucorp>Dept. of Statistics, Faculty of Commerce, Zagazig University, Egypt</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new inverse Weibull distribution : properties, classical and Bayesian estimation with applications</atitle><jtitle>Kuwait journal of science</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>48</volume><issue>3</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2307-4108</issn><eissn>2307-4116</eissn><abstract>This article proposes a new extension of the inverse Weibull distribution called, logarithmic transformed inverse Weibull distribution which can provide better fits than some of its well-known extensions. The proposed distribution contains inverse Weibull, inverse Rayleigh, inverse exponential, logarithmic transformed inverse Rayleigh and logarithmic transformed inverse exponential distributions as special sub-models. Our main focus is to derive some of its mathematical properties along with the estimation of its unknown parameters using frequentist and Bayesian estimation methods. We compare the performances of the proposed estimators using extensive numerical simulations for both small and large samples. The importance and potentiality of this distribution is analyzed via two real data sets</abstract><cop>Kuwait</cop><pub>Kuwait University, Academic Publication Council</pub><doi>10.48129/kjs.v48i3.9896</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2307-4108 |
ispartof | Kuwait journal of science, 2021-07, Vol.48 (3), p.1-10 |
issn | 2307-4108 2307-4116 |
language | eng |
recordid | cdi_crossref_primary_10_48129_kjs_v48i3_9896 |
source | Alma/SFX Local Collection |
title | A new inverse Weibull distribution : properties, classical and Bayesian estimation with applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20inverse%20Weibull%20distribution%20:%20properties,%20classical%20and%20Bayesian%20estimation%20with%20applications&rft.jtitle=Kuwait%20journal%20of%20science&rft.au=Afify,%20Ahmed%20Z.&rft.aucorp=Dept.%20of%20Statistics,%20Mathematics%20and%20Insurance,%20Benha%20University,%20Benha%2013511,%20Egypt&rft.date=2021-07-01&rft.volume=48&rft.issue=3&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2307-4108&rft.eissn=2307-4116&rft_id=info:doi/10.48129/kjs.v48i3.9896&rft_dat=%3Cemarefa_cross%3E1503279%3C/emarefa_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |