A new inverse Weibull distribution : properties, classical and Bayesian estimation with applications

This article proposes a new extension of the inverse Weibull distribution called, logarithmic transformed inverse Weibull distribution which can provide better fits than some of its well-known extensions. The proposed distribution contains inverse Weibull, inverse Rayleigh, inverse exponential, loga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kuwait journal of science 2021-07, Vol.48 (3), p.1-10
Hauptverfasser: Afify, Ahmed Z., Nassar, Mazin, Shawqi, Ahmad I.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 3
container_start_page 1
container_title Kuwait journal of science
container_volume 48
creator Afify, Ahmed Z.
Nassar, Mazin
Shawqi, Ahmad I.
description This article proposes a new extension of the inverse Weibull distribution called, logarithmic transformed inverse Weibull distribution which can provide better fits than some of its well-known extensions. The proposed distribution contains inverse Weibull, inverse Rayleigh, inverse exponential, logarithmic transformed inverse Rayleigh and logarithmic transformed inverse exponential distributions as special sub-models. Our main focus is to derive some of its mathematical properties along with the estimation of its unknown parameters using frequentist and Bayesian estimation methods. We compare the performances of the proposed estimators using extensive numerical simulations for both small and large samples. The importance and potentiality of this distribution is analyzed via two real data sets
doi_str_mv 10.48129/kjs.v48i3.9896
format Article
fullrecord <record><control><sourceid>emarefa_cross</sourceid><recordid>TN_cdi_crossref_primary_10_48129_kjs_v48i3_9896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1503279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-eb40786499c5058e2ff6b8b083cdf9c874d7a6d740c29a115e48815bd92e27e63</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRsNSevcn-ANPuV_bDWy1WhYIXxWPYbCa4NaZhJ7b035u2oqd5GZ53GB5CrjmbKsuFm32ucbpVNsqps06fkZGQzGSKc33-l5m9JBPENWOMSyV4bkakmtMWdjS2W0gI9B1i-d00tIrYpyH2cdPSO9qlTQepj4C3NDQeMQbfUN9W9N7vAaNvKWAfv_yR38X-g_quawbqsMArclH7BmHyO8fkbfnwunjKVi-Pz4v5KgtCqz6DUjFjtXIu5Cy3IOpal7ZkVoaqdsEaVRmvK6NYEM5znoOyludl5QQIA1qOyex0N6QNYoK66NLwVNoXnBVHT8XgqTh6Kg6ehsbNqQEDBrX_L-RMCuPkD1TraCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A new inverse Weibull distribution : properties, classical and Bayesian estimation with applications</title><source>Alma/SFX Local Collection</source><creator>Afify, Ahmed Z. ; Nassar, Mazin ; Shawqi, Ahmad I.</creator><creatorcontrib>Afify, Ahmed Z. ; Nassar, Mazin ; Shawqi, Ahmad I. ; Dept. of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt ; Dept. of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia ; Dept. of Statistics, Faculty of Commerce, Zagazig University, Egypt</creatorcontrib><description>This article proposes a new extension of the inverse Weibull distribution called, logarithmic transformed inverse Weibull distribution which can provide better fits than some of its well-known extensions. The proposed distribution contains inverse Weibull, inverse Rayleigh, inverse exponential, logarithmic transformed inverse Rayleigh and logarithmic transformed inverse exponential distributions as special sub-models. Our main focus is to derive some of its mathematical properties along with the estimation of its unknown parameters using frequentist and Bayesian estimation methods. We compare the performances of the proposed estimators using extensive numerical simulations for both small and large samples. The importance and potentiality of this distribution is analyzed via two real data sets</description><identifier>ISSN: 2307-4108</identifier><identifier>EISSN: 2307-4116</identifier><identifier>DOI: 10.48129/kjs.v48i3.9896</identifier><language>eng</language><publisher>Kuwait: Kuwait University, Academic Publication Council</publisher><ispartof>Kuwait journal of science, 2021-07, Vol.48 (3), p.1-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-eb40786499c5058e2ff6b8b083cdf9c874d7a6d740c29a115e48815bd92e27e63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Afify, Ahmed Z.</creatorcontrib><creatorcontrib>Nassar, Mazin</creatorcontrib><creatorcontrib>Shawqi, Ahmad I.</creatorcontrib><creatorcontrib>Dept. of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt</creatorcontrib><creatorcontrib>Dept. of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia</creatorcontrib><creatorcontrib>Dept. of Statistics, Faculty of Commerce, Zagazig University, Egypt</creatorcontrib><title>A new inverse Weibull distribution : properties, classical and Bayesian estimation with applications</title><title>Kuwait journal of science</title><description>This article proposes a new extension of the inverse Weibull distribution called, logarithmic transformed inverse Weibull distribution which can provide better fits than some of its well-known extensions. The proposed distribution contains inverse Weibull, inverse Rayleigh, inverse exponential, logarithmic transformed inverse Rayleigh and logarithmic transformed inverse exponential distributions as special sub-models. Our main focus is to derive some of its mathematical properties along with the estimation of its unknown parameters using frequentist and Bayesian estimation methods. We compare the performances of the proposed estimators using extensive numerical simulations for both small and large samples. The importance and potentiality of this distribution is analyzed via two real data sets</description><issn>2307-4108</issn><issn>2307-4116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AQhhdRsNSevcn-ANPuV_bDWy1WhYIXxWPYbCa4NaZhJ7b035u2oqd5GZ53GB5CrjmbKsuFm32ucbpVNsqps06fkZGQzGSKc33-l5m9JBPENWOMSyV4bkakmtMWdjS2W0gI9B1i-d00tIrYpyH2cdPSO9qlTQepj4C3NDQeMQbfUN9W9N7vAaNvKWAfv_yR38X-g_quawbqsMArclH7BmHyO8fkbfnwunjKVi-Pz4v5KgtCqz6DUjFjtXIu5Cy3IOpal7ZkVoaqdsEaVRmvK6NYEM5znoOyludl5QQIA1qOyex0N6QNYoK66NLwVNoXnBVHT8XgqTh6Kg6ehsbNqQEDBrX_L-RMCuPkD1TraCM</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Afify, Ahmed Z.</creator><creator>Nassar, Mazin</creator><creator>Shawqi, Ahmad I.</creator><general>Kuwait University, Academic Publication Council</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210701</creationdate><title>A new inverse Weibull distribution : properties, classical and Bayesian estimation with applications</title><author>Afify, Ahmed Z. ; Nassar, Mazin ; Shawqi, Ahmad I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-eb40786499c5058e2ff6b8b083cdf9c874d7a6d740c29a115e48815bd92e27e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afify, Ahmed Z.</creatorcontrib><creatorcontrib>Nassar, Mazin</creatorcontrib><creatorcontrib>Shawqi, Ahmad I.</creatorcontrib><creatorcontrib>Dept. of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt</creatorcontrib><creatorcontrib>Dept. of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia</creatorcontrib><creatorcontrib>Dept. of Statistics, Faculty of Commerce, Zagazig University, Egypt</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>CrossRef</collection><jtitle>Kuwait journal of science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afify, Ahmed Z.</au><au>Nassar, Mazin</au><au>Shawqi, Ahmad I.</au><aucorp>Dept. of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt</aucorp><aucorp>Dept. of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia</aucorp><aucorp>Dept. of Statistics, Faculty of Commerce, Zagazig University, Egypt</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new inverse Weibull distribution : properties, classical and Bayesian estimation with applications</atitle><jtitle>Kuwait journal of science</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>48</volume><issue>3</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2307-4108</issn><eissn>2307-4116</eissn><abstract>This article proposes a new extension of the inverse Weibull distribution called, logarithmic transformed inverse Weibull distribution which can provide better fits than some of its well-known extensions. The proposed distribution contains inverse Weibull, inverse Rayleigh, inverse exponential, logarithmic transformed inverse Rayleigh and logarithmic transformed inverse exponential distributions as special sub-models. Our main focus is to derive some of its mathematical properties along with the estimation of its unknown parameters using frequentist and Bayesian estimation methods. We compare the performances of the proposed estimators using extensive numerical simulations for both small and large samples. The importance and potentiality of this distribution is analyzed via two real data sets</abstract><cop>Kuwait</cop><pub>Kuwait University, Academic Publication Council</pub><doi>10.48129/kjs.v48i3.9896</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2307-4108
ispartof Kuwait journal of science, 2021-07, Vol.48 (3), p.1-10
issn 2307-4108
2307-4116
language eng
recordid cdi_crossref_primary_10_48129_kjs_v48i3_9896
source Alma/SFX Local Collection
title A new inverse Weibull distribution : properties, classical and Bayesian estimation with applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20inverse%20Weibull%20distribution%20:%20properties,%20classical%20and%20Bayesian%20estimation%20with%20applications&rft.jtitle=Kuwait%20journal%20of%20science&rft.au=Afify,%20Ahmed%20Z.&rft.aucorp=Dept.%20of%20Statistics,%20Mathematics%20and%20Insurance,%20Benha%20University,%20Benha%2013511,%20Egypt&rft.date=2021-07-01&rft.volume=48&rft.issue=3&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2307-4108&rft.eissn=2307-4116&rft_id=info:doi/10.48129/kjs.v48i3.9896&rft_dat=%3Cemarefa_cross%3E1503279%3C/emarefa_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true