Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on a Software-Defined Network (SDN) Controller

Software-Defined Networks (SDNs) provide a contemporary approach to networking technology, offering a versatile and dynamically efficient network architecture for enhanced surveillance and performance. However, SDN architectures may encounter flow conflicts. These conflicts arise when modifications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering, technology & applied science research technology & applied science research, 2024-04, Vol.14 (2), p.13261-13265
Hauptverfasser: Khairi, Mutaz. H. H., Ali Abdalla, Bushra Mohammed, Hassan, Mohamed Khalafalla, Ariffin, Sharifah H. S., Hamdan, Mosab
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13265
container_issue 2
container_start_page 13261
container_title Engineering, technology & applied science research
container_volume 14
creator Khairi, Mutaz. H. H.
Ali Abdalla, Bushra Mohammed
Hassan, Mohamed Khalafalla
Ariffin, Sharifah H. S.
Hamdan, Mosab
description Software-Defined Networks (SDNs) provide a contemporary approach to networking technology, offering a versatile and dynamically efficient network architecture for enhanced surveillance and performance. However, SDN architectures may encounter flow conflicts. These conflicts arise when modifications are made to specific flow properties, such as priority, match field, and action. Despite the existence of recommended solutions, the process of resolving conflicts in SDN continues to encounter difficulties. This study proposes an Extremely Fast Decision Tree (EFDT) classification technique to detect and categorize conflicts inside the flow table. The novelty of this method is based on the development of an accurate and effective machine-learning technique implemented on the Ryu controller plane and validated using the Mininet simulator. The effectiveness and efficiency of the proposed method were evaluated using various indicators, demonstrating superior performance in recognizing and categorizing conflict flow types in all flow sizes ranging from 10,000 to 100,000.
doi_str_mv 10.48084/etasr.6793
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_48084_etasr_6793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_48084_etasr_6793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-1f200e5aa1f4e1089c7c7c8fec7dafecb625a4e0071b2e39da053385a8da0de3</originalsourceid><addsrcrecordid>eNotkDFPwzAQhS0EElXpxB_w2Aql2I6TOGOVNIBUlaFhjtzkXAxujGxLpR355aSFd9J7d8O74UPonpI5F0TwRwjSu3ma5fEVGtEsZ5EgcXqNRoxxGnEusls08f6DDEpFyjM2Qj9vQRt90v0OL7-Dgz2YI66kD7iEVntte1w7ADxdVmU9wwuzs06H9z0OFhcywPk8AS5sr4xuA66MPeChJPHGqnCQDqISlO6hw2sIB-s-8XRTrmfnRnDWGHB36EZJ42Hyn2NUV8u6eI5Wr08vxWIVtYyJEFHFCIFESqo4UCLyNhtGKGizTg6-TVkiORCS0S2DOO8kSeJYJFIMWwfxGD38vW2d9d6Bar6c3kt3bChpLgCbC8DmDDD-BURLZeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on a Software-Defined Network (SDN) Controller</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Khairi, Mutaz. H. H. ; Ali Abdalla, Bushra Mohammed ; Hassan, Mohamed Khalafalla ; Ariffin, Sharifah H. S. ; Hamdan, Mosab</creator><creatorcontrib>Khairi, Mutaz. H. H. ; Ali Abdalla, Bushra Mohammed ; Hassan, Mohamed Khalafalla ; Ariffin, Sharifah H. S. ; Hamdan, Mosab</creatorcontrib><description>Software-Defined Networks (SDNs) provide a contemporary approach to networking technology, offering a versatile and dynamically efficient network architecture for enhanced surveillance and performance. However, SDN architectures may encounter flow conflicts. These conflicts arise when modifications are made to specific flow properties, such as priority, match field, and action. Despite the existence of recommended solutions, the process of resolving conflicts in SDN continues to encounter difficulties. This study proposes an Extremely Fast Decision Tree (EFDT) classification technique to detect and categorize conflicts inside the flow table. The novelty of this method is based on the development of an accurate and effective machine-learning technique implemented on the Ryu controller plane and validated using the Mininet simulator. The effectiveness and efficiency of the proposed method were evaluated using various indicators, demonstrating superior performance in recognizing and categorizing conflict flow types in all flow sizes ranging from 10,000 to 100,000.</description><identifier>ISSN: 2241-4487</identifier><identifier>EISSN: 1792-8036</identifier><identifier>DOI: 10.48084/etasr.6793</identifier><language>eng</language><ispartof>Engineering, technology &amp; applied science research, 2024-04, Vol.14 (2), p.13261-13265</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-1f200e5aa1f4e1089c7c7c8fec7dafecb625a4e0071b2e39da053385a8da0de3</cites><orcidid>0000-0002-6238-8915 ; 0000-0002-5904-7642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Khairi, Mutaz. H. H.</creatorcontrib><creatorcontrib>Ali Abdalla, Bushra Mohammed</creatorcontrib><creatorcontrib>Hassan, Mohamed Khalafalla</creatorcontrib><creatorcontrib>Ariffin, Sharifah H. S.</creatorcontrib><creatorcontrib>Hamdan, Mosab</creatorcontrib><title>Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on a Software-Defined Network (SDN) Controller</title><title>Engineering, technology &amp; applied science research</title><description>Software-Defined Networks (SDNs) provide a contemporary approach to networking technology, offering a versatile and dynamically efficient network architecture for enhanced surveillance and performance. However, SDN architectures may encounter flow conflicts. These conflicts arise when modifications are made to specific flow properties, such as priority, match field, and action. Despite the existence of recommended solutions, the process of resolving conflicts in SDN continues to encounter difficulties. This study proposes an Extremely Fast Decision Tree (EFDT) classification technique to detect and categorize conflicts inside the flow table. The novelty of this method is based on the development of an accurate and effective machine-learning technique implemented on the Ryu controller plane and validated using the Mininet simulator. The effectiveness and efficiency of the proposed method were evaluated using various indicators, demonstrating superior performance in recognizing and categorizing conflict flow types in all flow sizes ranging from 10,000 to 100,000.</description><issn>2241-4487</issn><issn>1792-8036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkDFPwzAQhS0EElXpxB_w2Aql2I6TOGOVNIBUlaFhjtzkXAxujGxLpR355aSFd9J7d8O74UPonpI5F0TwRwjSu3ma5fEVGtEsZ5EgcXqNRoxxGnEusls08f6DDEpFyjM2Qj9vQRt90v0OL7-Dgz2YI66kD7iEVntte1w7ADxdVmU9wwuzs06H9z0OFhcywPk8AS5sr4xuA66MPeChJPHGqnCQDqISlO6hw2sIB-s-8XRTrmfnRnDWGHB36EZJ42Hyn2NUV8u6eI5Wr08vxWIVtYyJEFHFCIFESqo4UCLyNhtGKGizTg6-TVkiORCS0S2DOO8kSeJYJFIMWwfxGD38vW2d9d6Bar6c3kt3bChpLgCbC8DmDDD-BURLZeg</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Khairi, Mutaz. H. H.</creator><creator>Ali Abdalla, Bushra Mohammed</creator><creator>Hassan, Mohamed Khalafalla</creator><creator>Ariffin, Sharifah H. S.</creator><creator>Hamdan, Mosab</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6238-8915</orcidid><orcidid>https://orcid.org/0000-0002-5904-7642</orcidid></search><sort><creationdate>20240401</creationdate><title>Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on a Software-Defined Network (SDN) Controller</title><author>Khairi, Mutaz. H. H. ; Ali Abdalla, Bushra Mohammed ; Hassan, Mohamed Khalafalla ; Ariffin, Sharifah H. S. ; Hamdan, Mosab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-1f200e5aa1f4e1089c7c7c8fec7dafecb625a4e0071b2e39da053385a8da0de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khairi, Mutaz. H. H.</creatorcontrib><creatorcontrib>Ali Abdalla, Bushra Mohammed</creatorcontrib><creatorcontrib>Hassan, Mohamed Khalafalla</creatorcontrib><creatorcontrib>Ariffin, Sharifah H. S.</creatorcontrib><creatorcontrib>Hamdan, Mosab</creatorcontrib><collection>CrossRef</collection><jtitle>Engineering, technology &amp; applied science research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khairi, Mutaz. H. H.</au><au>Ali Abdalla, Bushra Mohammed</au><au>Hassan, Mohamed Khalafalla</au><au>Ariffin, Sharifah H. S.</au><au>Hamdan, Mosab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on a Software-Defined Network (SDN) Controller</atitle><jtitle>Engineering, technology &amp; applied science research</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>14</volume><issue>2</issue><spage>13261</spage><epage>13265</epage><pages>13261-13265</pages><issn>2241-4487</issn><eissn>1792-8036</eissn><abstract>Software-Defined Networks (SDNs) provide a contemporary approach to networking technology, offering a versatile and dynamically efficient network architecture for enhanced surveillance and performance. However, SDN architectures may encounter flow conflicts. These conflicts arise when modifications are made to specific flow properties, such as priority, match field, and action. Despite the existence of recommended solutions, the process of resolving conflicts in SDN continues to encounter difficulties. This study proposes an Extremely Fast Decision Tree (EFDT) classification technique to detect and categorize conflicts inside the flow table. The novelty of this method is based on the development of an accurate and effective machine-learning technique implemented on the Ryu controller plane and validated using the Mininet simulator. The effectiveness and efficiency of the proposed method were evaluated using various indicators, demonstrating superior performance in recognizing and categorizing conflict flow types in all flow sizes ranging from 10,000 to 100,000.</abstract><doi>10.48084/etasr.6793</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6238-8915</orcidid><orcidid>https://orcid.org/0000-0002-5904-7642</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2241-4487
ispartof Engineering, technology & applied science research, 2024-04, Vol.14 (2), p.13261-13265
issn 2241-4487
1792-8036
language eng
recordid cdi_crossref_primary_10_48084_etasr_6793
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on a Software-Defined Network (SDN) Controller
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20Extremely%20Fast%20Decision%20Tree%20(EFDT)%20Algorithm%20to%20Categorize%20Conflict%20Flow%20on%20a%20Software-Defined%20Network%20(SDN)%20Controller&rft.jtitle=Engineering,%20technology%20&%20applied%20science%20research&rft.au=Khairi,%20Mutaz.%20H.%20H.&rft.date=2024-04-01&rft.volume=14&rft.issue=2&rft.spage=13261&rft.epage=13265&rft.pages=13261-13265&rft.issn=2241-4487&rft.eissn=1792-8036&rft_id=info:doi/10.48084/etasr.6793&rft_dat=%3Ccrossref%3E10_48084_etasr_6793%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true