Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on a Software-Defined Network (SDN) Controller
Software-Defined Networks (SDNs) provide a contemporary approach to networking technology, offering a versatile and dynamically efficient network architecture for enhanced surveillance and performance. However, SDN architectures may encounter flow conflicts. These conflicts arise when modifications...
Gespeichert in:
Veröffentlicht in: | Engineering, technology & applied science research technology & applied science research, 2024-04, Vol.14 (2), p.13261-13265 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13265 |
---|---|
container_issue | 2 |
container_start_page | 13261 |
container_title | Engineering, technology & applied science research |
container_volume | 14 |
creator | Khairi, Mutaz. H. H. Ali Abdalla, Bushra Mohammed Hassan, Mohamed Khalafalla Ariffin, Sharifah H. S. Hamdan, Mosab |
description | Software-Defined Networks (SDNs) provide a contemporary approach to networking technology, offering a versatile and dynamically efficient network architecture for enhanced surveillance and performance. However, SDN architectures may encounter flow conflicts. These conflicts arise when modifications are made to specific flow properties, such as priority, match field, and action. Despite the existence of recommended solutions, the process of resolving conflicts in SDN continues to encounter difficulties. This study proposes an Extremely Fast Decision Tree (EFDT) classification technique to detect and categorize conflicts inside the flow table. The novelty of this method is based on the development of an accurate and effective machine-learning technique implemented on the Ryu controller plane and validated using the Mininet simulator. The effectiveness and efficiency of the proposed method were evaluated using various indicators, demonstrating superior performance in recognizing and categorizing conflict flow types in all flow sizes ranging from 10,000 to 100,000. |
doi_str_mv | 10.48084/etasr.6793 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_48084_etasr_6793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_48084_etasr_6793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-1f200e5aa1f4e1089c7c7c8fec7dafecb625a4e0071b2e39da053385a8da0de3</originalsourceid><addsrcrecordid>eNotkDFPwzAQhS0EElXpxB_w2Aql2I6TOGOVNIBUlaFhjtzkXAxujGxLpR355aSFd9J7d8O74UPonpI5F0TwRwjSu3ma5fEVGtEsZ5EgcXqNRoxxGnEusls08f6DDEpFyjM2Qj9vQRt90v0OL7-Dgz2YI66kD7iEVntte1w7ADxdVmU9wwuzs06H9z0OFhcywPk8AS5sr4xuA66MPeChJPHGqnCQDqISlO6hw2sIB-s-8XRTrmfnRnDWGHB36EZJ42Hyn2NUV8u6eI5Wr08vxWIVtYyJEFHFCIFESqo4UCLyNhtGKGizTg6-TVkiORCS0S2DOO8kSeJYJFIMWwfxGD38vW2d9d6Bar6c3kt3bChpLgCbC8DmDDD-BURLZeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on a Software-Defined Network (SDN) Controller</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Khairi, Mutaz. H. H. ; Ali Abdalla, Bushra Mohammed ; Hassan, Mohamed Khalafalla ; Ariffin, Sharifah H. S. ; Hamdan, Mosab</creator><creatorcontrib>Khairi, Mutaz. H. H. ; Ali Abdalla, Bushra Mohammed ; Hassan, Mohamed Khalafalla ; Ariffin, Sharifah H. S. ; Hamdan, Mosab</creatorcontrib><description>Software-Defined Networks (SDNs) provide a contemporary approach to networking technology, offering a versatile and dynamically efficient network architecture for enhanced surveillance and performance. However, SDN architectures may encounter flow conflicts. These conflicts arise when modifications are made to specific flow properties, such as priority, match field, and action. Despite the existence of recommended solutions, the process of resolving conflicts in SDN continues to encounter difficulties. This study proposes an Extremely Fast Decision Tree (EFDT) classification technique to detect and categorize conflicts inside the flow table. The novelty of this method is based on the development of an accurate and effective machine-learning technique implemented on the Ryu controller plane and validated using the Mininet simulator. The effectiveness and efficiency of the proposed method were evaluated using various indicators, demonstrating superior performance in recognizing and categorizing conflict flow types in all flow sizes ranging from 10,000 to 100,000.</description><identifier>ISSN: 2241-4487</identifier><identifier>EISSN: 1792-8036</identifier><identifier>DOI: 10.48084/etasr.6793</identifier><language>eng</language><ispartof>Engineering, technology & applied science research, 2024-04, Vol.14 (2), p.13261-13265</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-1f200e5aa1f4e1089c7c7c8fec7dafecb625a4e0071b2e39da053385a8da0de3</cites><orcidid>0000-0002-6238-8915 ; 0000-0002-5904-7642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Khairi, Mutaz. H. H.</creatorcontrib><creatorcontrib>Ali Abdalla, Bushra Mohammed</creatorcontrib><creatorcontrib>Hassan, Mohamed Khalafalla</creatorcontrib><creatorcontrib>Ariffin, Sharifah H. S.</creatorcontrib><creatorcontrib>Hamdan, Mosab</creatorcontrib><title>Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on a Software-Defined Network (SDN) Controller</title><title>Engineering, technology & applied science research</title><description>Software-Defined Networks (SDNs) provide a contemporary approach to networking technology, offering a versatile and dynamically efficient network architecture for enhanced surveillance and performance. However, SDN architectures may encounter flow conflicts. These conflicts arise when modifications are made to specific flow properties, such as priority, match field, and action. Despite the existence of recommended solutions, the process of resolving conflicts in SDN continues to encounter difficulties. This study proposes an Extremely Fast Decision Tree (EFDT) classification technique to detect and categorize conflicts inside the flow table. The novelty of this method is based on the development of an accurate and effective machine-learning technique implemented on the Ryu controller plane and validated using the Mininet simulator. The effectiveness and efficiency of the proposed method were evaluated using various indicators, demonstrating superior performance in recognizing and categorizing conflict flow types in all flow sizes ranging from 10,000 to 100,000.</description><issn>2241-4487</issn><issn>1792-8036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkDFPwzAQhS0EElXpxB_w2Aql2I6TOGOVNIBUlaFhjtzkXAxujGxLpR355aSFd9J7d8O74UPonpI5F0TwRwjSu3ma5fEVGtEsZ5EgcXqNRoxxGnEusls08f6DDEpFyjM2Qj9vQRt90v0OL7-Dgz2YI66kD7iEVntte1w7ADxdVmU9wwuzs06H9z0OFhcywPk8AS5sr4xuA66MPeChJPHGqnCQDqISlO6hw2sIB-s-8XRTrmfnRnDWGHB36EZJ42Hyn2NUV8u6eI5Wr08vxWIVtYyJEFHFCIFESqo4UCLyNhtGKGizTg6-TVkiORCS0S2DOO8kSeJYJFIMWwfxGD38vW2d9d6Bar6c3kt3bChpLgCbC8DmDDD-BURLZeg</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Khairi, Mutaz. H. H.</creator><creator>Ali Abdalla, Bushra Mohammed</creator><creator>Hassan, Mohamed Khalafalla</creator><creator>Ariffin, Sharifah H. S.</creator><creator>Hamdan, Mosab</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6238-8915</orcidid><orcidid>https://orcid.org/0000-0002-5904-7642</orcidid></search><sort><creationdate>20240401</creationdate><title>Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on a Software-Defined Network (SDN) Controller</title><author>Khairi, Mutaz. H. H. ; Ali Abdalla, Bushra Mohammed ; Hassan, Mohamed Khalafalla ; Ariffin, Sharifah H. S. ; Hamdan, Mosab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-1f200e5aa1f4e1089c7c7c8fec7dafecb625a4e0071b2e39da053385a8da0de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khairi, Mutaz. H. H.</creatorcontrib><creatorcontrib>Ali Abdalla, Bushra Mohammed</creatorcontrib><creatorcontrib>Hassan, Mohamed Khalafalla</creatorcontrib><creatorcontrib>Ariffin, Sharifah H. S.</creatorcontrib><creatorcontrib>Hamdan, Mosab</creatorcontrib><collection>CrossRef</collection><jtitle>Engineering, technology & applied science research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khairi, Mutaz. H. H.</au><au>Ali Abdalla, Bushra Mohammed</au><au>Hassan, Mohamed Khalafalla</au><au>Ariffin, Sharifah H. S.</au><au>Hamdan, Mosab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on a Software-Defined Network (SDN) Controller</atitle><jtitle>Engineering, technology & applied science research</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>14</volume><issue>2</issue><spage>13261</spage><epage>13265</epage><pages>13261-13265</pages><issn>2241-4487</issn><eissn>1792-8036</eissn><abstract>Software-Defined Networks (SDNs) provide a contemporary approach to networking technology, offering a versatile and dynamically efficient network architecture for enhanced surveillance and performance. However, SDN architectures may encounter flow conflicts. These conflicts arise when modifications are made to specific flow properties, such as priority, match field, and action. Despite the existence of recommended solutions, the process of resolving conflicts in SDN continues to encounter difficulties. This study proposes an Extremely Fast Decision Tree (EFDT) classification technique to detect and categorize conflicts inside the flow table. The novelty of this method is based on the development of an accurate and effective machine-learning technique implemented on the Ryu controller plane and validated using the Mininet simulator. The effectiveness and efficiency of the proposed method were evaluated using various indicators, demonstrating superior performance in recognizing and categorizing conflict flow types in all flow sizes ranging from 10,000 to 100,000.</abstract><doi>10.48084/etasr.6793</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6238-8915</orcidid><orcidid>https://orcid.org/0000-0002-5904-7642</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2241-4487 |
ispartof | Engineering, technology & applied science research, 2024-04, Vol.14 (2), p.13261-13265 |
issn | 2241-4487 1792-8036 |
language | eng |
recordid | cdi_crossref_primary_10_48084_etasr_6793 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Utilizing Extremely Fast Decision Tree (EFDT) Algorithm to Categorize Conflict Flow on a Software-Defined Network (SDN) Controller |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20Extremely%20Fast%20Decision%20Tree%20(EFDT)%20Algorithm%20to%20Categorize%20Conflict%20Flow%20on%20a%20Software-Defined%20Network%20(SDN)%20Controller&rft.jtitle=Engineering,%20technology%20&%20applied%20science%20research&rft.au=Khairi,%20Mutaz.%20H.%20H.&rft.date=2024-04-01&rft.volume=14&rft.issue=2&rft.spage=13261&rft.epage=13265&rft.pages=13261-13265&rft.issn=2241-4487&rft.eissn=1792-8036&rft_id=info:doi/10.48084/etasr.6793&rft_dat=%3Ccrossref%3E10_48084_etasr_6793%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |