Prediction of Vehicle-induced Air Pollution based on Advanced Machine Learning Models

Vehicle-induced air pollution is an important issue in the 21st century, posing detrimental effects on human health. Prediction of vehicle-emitted air pollutants and evaluation of the diverse factors that contribute to them are of the utmost importance. This study employed advanced tree-based machin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering, technology & applied science research technology & applied science research, 2024-02, Vol.14 (1), p.12837-12843
Hauptverfasser: Matara, Caroline, Osano, Simpson, Yusuf, Amir Okeyo, Aketch, Elisha Ochungo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12843
container_issue 1
container_start_page 12837
container_title Engineering, technology & applied science research
container_volume 14
creator Matara, Caroline
Osano, Simpson
Yusuf, Amir Okeyo
Aketch, Elisha Ochungo
description Vehicle-induced air pollution is an important issue in the 21st century, posing detrimental effects on human health. Prediction of vehicle-emitted air pollutants and evaluation of the diverse factors that contribute to them are of the utmost importance. This study employed advanced tree-based machine learning models to predict vehicle-induced air pollutant levels, with a particular focus on fine particulate matter (PM2.5). In addition to a benchmark statistical model, the models employed were Gradient Boosting (GB), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGBoost), Extra Tree (ET), and Random Forest (RF). Regarding the evaluation of PM2.5 predictions, the ET model outperformed the others, as shown by MAE of 1.69, MSE of 5.91, RMSE of 2.43, and R2 of 0.71. Afterward, the optimal ET models were interpreted using SHAP analysis to overcome the ET model's lack of explainability. Based on the SHAP analysis, it was determined that temperature, humidity, and wind speed emerged as the primary determinants in forecasting PM2.5 levels.
doi_str_mv 10.48084/etasr.6678
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_48084_etasr_6678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_48084_etasr_6678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c158t-d8716750d53e80958fcc9cb7536a09dfc7c9d3bf66c46fd723cc59e1aa7501073</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EElHpiT_gO0qx42eOUcWjUip6oFwjZ21To-AgO0Xi35MW9rKrmZ05fAjdUrLimmh-7yaT00pKpS9QQVVdlZoweYmKquK05Fyra7TM-YPMI7XkqirQfpecDTCFMeLR4zd3CDC4MkR7BGdxExLejcNwPD_0Js_afDT228STvzVwCNHh1pkUQ3zH29G6Id-gK2-G7Jb_e4H2jw-v6-eyfXnarJu2BCr0VFqtqFSCWMGcJrXQHqCGXgkmDamtBwW1Zb2XErj0VlUMQNSOGjOHKFFsge7-eiGNOSfnu68UPk366SjpzlC6M5TuBIX9AmhMVfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of Vehicle-induced Air Pollution based on Advanced Machine Learning Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Matara, Caroline ; Osano, Simpson ; Yusuf, Amir Okeyo ; Aketch, Elisha Ochungo</creator><creatorcontrib>Matara, Caroline ; Osano, Simpson ; Yusuf, Amir Okeyo ; Aketch, Elisha Ochungo</creatorcontrib><description>Vehicle-induced air pollution is an important issue in the 21st century, posing detrimental effects on human health. Prediction of vehicle-emitted air pollutants and evaluation of the diverse factors that contribute to them are of the utmost importance. This study employed advanced tree-based machine learning models to predict vehicle-induced air pollutant levels, with a particular focus on fine particulate matter (PM2.5). In addition to a benchmark statistical model, the models employed were Gradient Boosting (GB), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGBoost), Extra Tree (ET), and Random Forest (RF). Regarding the evaluation of PM2.5 predictions, the ET model outperformed the others, as shown by MAE of 1.69, MSE of 5.91, RMSE of 2.43, and R2 of 0.71. Afterward, the optimal ET models were interpreted using SHAP analysis to overcome the ET model's lack of explainability. Based on the SHAP analysis, it was determined that temperature, humidity, and wind speed emerged as the primary determinants in forecasting PM2.5 levels.</description><identifier>ISSN: 2241-4487</identifier><identifier>EISSN: 1792-8036</identifier><identifier>DOI: 10.48084/etasr.6678</identifier><language>eng</language><ispartof>Engineering, technology &amp; applied science research, 2024-02, Vol.14 (1), p.12837-12843</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c158t-d8716750d53e80958fcc9cb7536a09dfc7c9d3bf66c46fd723cc59e1aa7501073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Matara, Caroline</creatorcontrib><creatorcontrib>Osano, Simpson</creatorcontrib><creatorcontrib>Yusuf, Amir Okeyo</creatorcontrib><creatorcontrib>Aketch, Elisha Ochungo</creatorcontrib><title>Prediction of Vehicle-induced Air Pollution based on Advanced Machine Learning Models</title><title>Engineering, technology &amp; applied science research</title><description>Vehicle-induced air pollution is an important issue in the 21st century, posing detrimental effects on human health. Prediction of vehicle-emitted air pollutants and evaluation of the diverse factors that contribute to them are of the utmost importance. This study employed advanced tree-based machine learning models to predict vehicle-induced air pollutant levels, with a particular focus on fine particulate matter (PM2.5). In addition to a benchmark statistical model, the models employed were Gradient Boosting (GB), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGBoost), Extra Tree (ET), and Random Forest (RF). Regarding the evaluation of PM2.5 predictions, the ET model outperformed the others, as shown by MAE of 1.69, MSE of 5.91, RMSE of 2.43, and R2 of 0.71. Afterward, the optimal ET models were interpreted using SHAP analysis to overcome the ET model's lack of explainability. Based on the SHAP analysis, it was determined that temperature, humidity, and wind speed emerged as the primary determinants in forecasting PM2.5 levels.</description><issn>2241-4487</issn><issn>1792-8036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkEtPwzAQhC0EElHpiT_gO0qx42eOUcWjUip6oFwjZ21To-AgO0Xi35MW9rKrmZ05fAjdUrLimmh-7yaT00pKpS9QQVVdlZoweYmKquK05Fyra7TM-YPMI7XkqirQfpecDTCFMeLR4zd3CDC4MkR7BGdxExLejcNwPD_0Js_afDT228STvzVwCNHh1pkUQ3zH29G6Id-gK2-G7Jb_e4H2jw-v6-eyfXnarJu2BCr0VFqtqFSCWMGcJrXQHqCGXgkmDamtBwW1Zb2XErj0VlUMQNSOGjOHKFFsge7-eiGNOSfnu68UPk366SjpzlC6M5TuBIX9AmhMVfo</recordid><startdate>20240208</startdate><enddate>20240208</enddate><creator>Matara, Caroline</creator><creator>Osano, Simpson</creator><creator>Yusuf, Amir Okeyo</creator><creator>Aketch, Elisha Ochungo</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240208</creationdate><title>Prediction of Vehicle-induced Air Pollution based on Advanced Machine Learning Models</title><author>Matara, Caroline ; Osano, Simpson ; Yusuf, Amir Okeyo ; Aketch, Elisha Ochungo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c158t-d8716750d53e80958fcc9cb7536a09dfc7c9d3bf66c46fd723cc59e1aa7501073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matara, Caroline</creatorcontrib><creatorcontrib>Osano, Simpson</creatorcontrib><creatorcontrib>Yusuf, Amir Okeyo</creatorcontrib><creatorcontrib>Aketch, Elisha Ochungo</creatorcontrib><collection>CrossRef</collection><jtitle>Engineering, technology &amp; applied science research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matara, Caroline</au><au>Osano, Simpson</au><au>Yusuf, Amir Okeyo</au><au>Aketch, Elisha Ochungo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Vehicle-induced Air Pollution based on Advanced Machine Learning Models</atitle><jtitle>Engineering, technology &amp; applied science research</jtitle><date>2024-02-08</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>12837</spage><epage>12843</epage><pages>12837-12843</pages><issn>2241-4487</issn><eissn>1792-8036</eissn><abstract>Vehicle-induced air pollution is an important issue in the 21st century, posing detrimental effects on human health. Prediction of vehicle-emitted air pollutants and evaluation of the diverse factors that contribute to them are of the utmost importance. This study employed advanced tree-based machine learning models to predict vehicle-induced air pollutant levels, with a particular focus on fine particulate matter (PM2.5). In addition to a benchmark statistical model, the models employed were Gradient Boosting (GB), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGBoost), Extra Tree (ET), and Random Forest (RF). Regarding the evaluation of PM2.5 predictions, the ET model outperformed the others, as shown by MAE of 1.69, MSE of 5.91, RMSE of 2.43, and R2 of 0.71. Afterward, the optimal ET models were interpreted using SHAP analysis to overcome the ET model's lack of explainability. Based on the SHAP analysis, it was determined that temperature, humidity, and wind speed emerged as the primary determinants in forecasting PM2.5 levels.</abstract><doi>10.48084/etasr.6678</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2241-4487
ispartof Engineering, technology & applied science research, 2024-02, Vol.14 (1), p.12837-12843
issn 2241-4487
1792-8036
language eng
recordid cdi_crossref_primary_10_48084_etasr_6678
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Prediction of Vehicle-induced Air Pollution based on Advanced Machine Learning Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Vehicle-induced%20Air%20Pollution%20based%20on%20Advanced%20Machine%20Learning%20Models&rft.jtitle=Engineering,%20technology%20&%20applied%20science%20research&rft.au=Matara,%20Caroline&rft.date=2024-02-08&rft.volume=14&rft.issue=1&rft.spage=12837&rft.epage=12843&rft.pages=12837-12843&rft.issn=2241-4487&rft.eissn=1792-8036&rft_id=info:doi/10.48084/etasr.6678&rft_dat=%3Ccrossref%3E10_48084_etasr_6678%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true