Removal of Multiplicative Gamma Noise from Images via SRAD Model Amelioration

In this paper, an improved Speckle Reducing Anisotropic Diffusion (SRAD), destined to remove multiplicative gamma noise applied to different images is proposed. The basic idea is to divide the image into several riddled areas and then calculate the Equivalent Number of Look (ENL) of each region. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering, technology & applied science research technology & applied science research, 2021-12, Vol.11 (6), p.7917-7921
Hauptverfasser: Diffellah, N., Hamdini, R., Bekkouche, T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7921
container_issue 6
container_start_page 7917
container_title Engineering, technology & applied science research
container_volume 11
creator Diffellah, N.
Hamdini, R.
Bekkouche, T.
description In this paper, an improved Speckle Reducing Anisotropic Diffusion (SRAD), destined to remove multiplicative gamma noise applied to different images is proposed. The basic idea is to divide the image into several riddled areas and then calculate the Equivalent Number of Look (ENL) of each region. The largest value of the ENL is the best optimal homogeneous region of the image. This optimal choice allows us to solve the major problem of the SRAD algorithm articulated around a visual choice of the homogeneous region which is not satisfactory and causes non-uniformity in this area. To give more validity to the proposed method, several experimentations were conducted using different kinds of images and were approved by some quantitative metrics like PSNR, SNR, VSNR, and SSIM. The computer simulation results confirm the efficiency of the proposed method which outperformances the classical SRAD method.
doi_str_mv 10.48084/etasr.4527
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_48084_etasr_4527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_48084_etasr_4527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-be163f33879bf8a1b13cc195c5e51089ab2b942cbedb47fc83430f673ef5a4ce3</originalsourceid><addsrcrecordid>eNot0E1LAzEYBOAgCpbak38gd9mar91kj0vVWugqVD0vSfpGIokpybrgv7dW5zKnmcOD0DUlS6GIErcw6pKXombyDM2obFmlCG_O0YwxQSshlLxEi1I-yDGNaoRkM9TvIKZJB5wc7r_C6A_BWz36CfBax6jxU_IFsMsp4k3U71Dw5DV-2XV3uE97CLiLEHzKx036vEIXTocCi_-eo7eH-9fVY7V9Xm9W3bayTJKxMkAb7jhXsjVOaWoot5a2ta2hpkS12jDTCmYN7I2QziouOHGN5OBqLSzwObr5-7U5lZLBDYfso87fAyXDCWM4YQy_GPwHQLBTKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Removal of Multiplicative Gamma Noise from Images via SRAD Model Amelioration</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Diffellah, N. ; Hamdini, R. ; Bekkouche, T.</creator><creatorcontrib>Diffellah, N. ; Hamdini, R. ; Bekkouche, T.</creatorcontrib><description>In this paper, an improved Speckle Reducing Anisotropic Diffusion (SRAD), destined to remove multiplicative gamma noise applied to different images is proposed. The basic idea is to divide the image into several riddled areas and then calculate the Equivalent Number of Look (ENL) of each region. The largest value of the ENL is the best optimal homogeneous region of the image. This optimal choice allows us to solve the major problem of the SRAD algorithm articulated around a visual choice of the homogeneous region which is not satisfactory and causes non-uniformity in this area. To give more validity to the proposed method, several experimentations were conducted using different kinds of images and were approved by some quantitative metrics like PSNR, SNR, VSNR, and SSIM. The computer simulation results confirm the efficiency of the proposed method which outperformances the classical SRAD method.</description><identifier>ISSN: 2241-4487</identifier><identifier>EISSN: 1792-8036</identifier><identifier>DOI: 10.48084/etasr.4527</identifier><language>eng</language><ispartof>Engineering, technology &amp; applied science research, 2021-12, Vol.11 (6), p.7917-7921</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-be163f33879bf8a1b13cc195c5e51089ab2b942cbedb47fc83430f673ef5a4ce3</citedby><cites>FETCH-LOGICAL-c270t-be163f33879bf8a1b13cc195c5e51089ab2b942cbedb47fc83430f673ef5a4ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Diffellah, N.</creatorcontrib><creatorcontrib>Hamdini, R.</creatorcontrib><creatorcontrib>Bekkouche, T.</creatorcontrib><title>Removal of Multiplicative Gamma Noise from Images via SRAD Model Amelioration</title><title>Engineering, technology &amp; applied science research</title><description>In this paper, an improved Speckle Reducing Anisotropic Diffusion (SRAD), destined to remove multiplicative gamma noise applied to different images is proposed. The basic idea is to divide the image into several riddled areas and then calculate the Equivalent Number of Look (ENL) of each region. The largest value of the ENL is the best optimal homogeneous region of the image. This optimal choice allows us to solve the major problem of the SRAD algorithm articulated around a visual choice of the homogeneous region which is not satisfactory and causes non-uniformity in this area. To give more validity to the proposed method, several experimentations were conducted using different kinds of images and were approved by some quantitative metrics like PSNR, SNR, VSNR, and SSIM. The computer simulation results confirm the efficiency of the proposed method which outperformances the classical SRAD method.</description><issn>2241-4487</issn><issn>1792-8036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNot0E1LAzEYBOAgCpbak38gd9mar91kj0vVWugqVD0vSfpGIokpybrgv7dW5zKnmcOD0DUlS6GIErcw6pKXombyDM2obFmlCG_O0YwxQSshlLxEi1I-yDGNaoRkM9TvIKZJB5wc7r_C6A_BWz36CfBax6jxU_IFsMsp4k3U71Dw5DV-2XV3uE97CLiLEHzKx036vEIXTocCi_-eo7eH-9fVY7V9Xm9W3bayTJKxMkAb7jhXsjVOaWoot5a2ta2hpkS12jDTCmYN7I2QziouOHGN5OBqLSzwObr5-7U5lZLBDYfso87fAyXDCWM4YQy_GPwHQLBTKQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Diffellah, N.</creator><creator>Hamdini, R.</creator><creator>Bekkouche, T.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Removal of Multiplicative Gamma Noise from Images via SRAD Model Amelioration</title><author>Diffellah, N. ; Hamdini, R. ; Bekkouche, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-be163f33879bf8a1b13cc195c5e51089ab2b942cbedb47fc83430f673ef5a4ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diffellah, N.</creatorcontrib><creatorcontrib>Hamdini, R.</creatorcontrib><creatorcontrib>Bekkouche, T.</creatorcontrib><collection>CrossRef</collection><jtitle>Engineering, technology &amp; applied science research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diffellah, N.</au><au>Hamdini, R.</au><au>Bekkouche, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal of Multiplicative Gamma Noise from Images via SRAD Model Amelioration</atitle><jtitle>Engineering, technology &amp; applied science research</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>7917</spage><epage>7921</epage><pages>7917-7921</pages><issn>2241-4487</issn><eissn>1792-8036</eissn><abstract>In this paper, an improved Speckle Reducing Anisotropic Diffusion (SRAD), destined to remove multiplicative gamma noise applied to different images is proposed. The basic idea is to divide the image into several riddled areas and then calculate the Equivalent Number of Look (ENL) of each region. The largest value of the ENL is the best optimal homogeneous region of the image. This optimal choice allows us to solve the major problem of the SRAD algorithm articulated around a visual choice of the homogeneous region which is not satisfactory and causes non-uniformity in this area. To give more validity to the proposed method, several experimentations were conducted using different kinds of images and were approved by some quantitative metrics like PSNR, SNR, VSNR, and SSIM. The computer simulation results confirm the efficiency of the proposed method which outperformances the classical SRAD method.</abstract><doi>10.48084/etasr.4527</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2241-4487
ispartof Engineering, technology & applied science research, 2021-12, Vol.11 (6), p.7917-7921
issn 2241-4487
1792-8036
language eng
recordid cdi_crossref_primary_10_48084_etasr_4527
source EZB-FREE-00999 freely available EZB journals
title Removal of Multiplicative Gamma Noise from Images via SRAD Model Amelioration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20of%20Multiplicative%20Gamma%20Noise%20from%20Images%20via%20SRAD%20Model%20Amelioration&rft.jtitle=Engineering,%20technology%20&%20applied%20science%20research&rft.au=Diffellah,%20N.&rft.date=2021-12-01&rft.volume=11&rft.issue=6&rft.spage=7917&rft.epage=7921&rft.pages=7917-7921&rft.issn=2241-4487&rft.eissn=1792-8036&rft_id=info:doi/10.48084/etasr.4527&rft_dat=%3Ccrossref%3E10_48084_etasr_4527%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true