Imperfect Roll Arrangement Compensation Control based on Neural Network for Web Handling Systems

The speed and tension control problem of a web handling system is investigated in this paper. From the system equations of motion, we developed a backstepping-sliding mode control for web speed and tension regulation tasks. It is obvious that the designed control depends heavily on roll inertia info...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering, technology & applied science research technology & applied science research, 2020-06, Vol.10 (3), p.5694-5699
Hauptverfasser: Duc, D. N., Thi, L. T., Nguyen, T. L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5699
container_issue 3
container_start_page 5694
container_title Engineering, technology & applied science research
container_volume 10
creator Duc, D. N.
Thi, L. T.
Nguyen, T. L.
description The speed and tension control problem of a web handling system is investigated in this paper. From the system equations of motion, we developed a backstepping-sliding mode control for web speed and tension regulation tasks. It is obvious that the designed control depends heavily on roll inertia information. Dissimilar to other researches that were based on the assumptions of rolls with perfect cylindrical form with the rotating shafts of the rolls considered properly aligned, the novelty of this paper is the presentation of a neural network to compensate the effects of imperfect roll arrangement. The neural network design is based on the Radial Basis Function (RBF) network estimating the uncertainty of roll inertia. The information on estimated inertia is fed into a backstepping-sliding mode controller that ensures tension and velocity tracking. The control design is presented in a systematical approach. Closed loop system stability is proven mathematically. The tracking performance is shown through several simulation scenarios.
doi_str_mv 10.48084/etasr.3530
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_48084_etasr_3530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_48084_etasr_3530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-bca40ad69f8bc52bc334e90addfcd4b1b1920bb3386a5fa4b5eb12b79fdf4ee53</originalsourceid><addsrcrecordid>eNotkEtLAzEcxIMouNSe_AK5y9a8djd7LEVtoSj4wOOaxz9ldTcpSUT67btW5zLMDMzhh9A1JQshiRS3kFWKC15xcoYK2rSslITX56hgTNBSCNlconlKn2RSLWvRsAJ9bMY9RAcm4-cwDHgZo_I7GMFnvArT5pPKffBT8DmGAWuVwOKpeITvqIbJ8k-IX9iFiN9B47Xyduj9Dr8cUoYxXaELp4YE83-fobf7u9fVutw-PWxWy21pWENyqY0SRNm6dVKbimnDuYB2aqwzVmiqacuI1pzLWlVOCV2Bpkw3rbNOAFR8hm7-fk0MKUVw3T72o4qHjpLuxKc78el--fAjqFBcAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Imperfect Roll Arrangement Compensation Control based on Neural Network for Web Handling Systems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Duc, D. N. ; Thi, L. T. ; Nguyen, T. L.</creator><creatorcontrib>Duc, D. N. ; Thi, L. T. ; Nguyen, T. L.</creatorcontrib><description>The speed and tension control problem of a web handling system is investigated in this paper. From the system equations of motion, we developed a backstepping-sliding mode control for web speed and tension regulation tasks. It is obvious that the designed control depends heavily on roll inertia information. Dissimilar to other researches that were based on the assumptions of rolls with perfect cylindrical form with the rotating shafts of the rolls considered properly aligned, the novelty of this paper is the presentation of a neural network to compensate the effects of imperfect roll arrangement. The neural network design is based on the Radial Basis Function (RBF) network estimating the uncertainty of roll inertia. The information on estimated inertia is fed into a backstepping-sliding mode controller that ensures tension and velocity tracking. The control design is presented in a systematical approach. Closed loop system stability is proven mathematically. The tracking performance is shown through several simulation scenarios.</description><identifier>ISSN: 2241-4487</identifier><identifier>EISSN: 1792-8036</identifier><identifier>DOI: 10.48084/etasr.3530</identifier><language>eng</language><ispartof>Engineering, technology &amp; applied science research, 2020-06, Vol.10 (3), p.5694-5699</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-bca40ad69f8bc52bc334e90addfcd4b1b1920bb3386a5fa4b5eb12b79fdf4ee53</citedby><cites>FETCH-LOGICAL-c270t-bca40ad69f8bc52bc334e90addfcd4b1b1920bb3386a5fa4b5eb12b79fdf4ee53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Duc, D. N.</creatorcontrib><creatorcontrib>Thi, L. T.</creatorcontrib><creatorcontrib>Nguyen, T. L.</creatorcontrib><title>Imperfect Roll Arrangement Compensation Control based on Neural Network for Web Handling Systems</title><title>Engineering, technology &amp; applied science research</title><description>The speed and tension control problem of a web handling system is investigated in this paper. From the system equations of motion, we developed a backstepping-sliding mode control for web speed and tension regulation tasks. It is obvious that the designed control depends heavily on roll inertia information. Dissimilar to other researches that were based on the assumptions of rolls with perfect cylindrical form with the rotating shafts of the rolls considered properly aligned, the novelty of this paper is the presentation of a neural network to compensate the effects of imperfect roll arrangement. The neural network design is based on the Radial Basis Function (RBF) network estimating the uncertainty of roll inertia. The information on estimated inertia is fed into a backstepping-sliding mode controller that ensures tension and velocity tracking. The control design is presented in a systematical approach. Closed loop system stability is proven mathematically. The tracking performance is shown through several simulation scenarios.</description><issn>2241-4487</issn><issn>1792-8036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEcxIMouNSe_AK5y9a8djd7LEVtoSj4wOOaxz9ldTcpSUT67btW5zLMDMzhh9A1JQshiRS3kFWKC15xcoYK2rSslITX56hgTNBSCNlconlKn2RSLWvRsAJ9bMY9RAcm4-cwDHgZo_I7GMFnvArT5pPKffBT8DmGAWuVwOKpeITvqIbJ8k-IX9iFiN9B47Xyduj9Dr8cUoYxXaELp4YE83-fobf7u9fVutw-PWxWy21pWENyqY0SRNm6dVKbimnDuYB2aqwzVmiqacuI1pzLWlVOCV2Bpkw3rbNOAFR8hm7-fk0MKUVw3T72o4qHjpLuxKc78el--fAjqFBcAw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Duc, D. N.</creator><creator>Thi, L. T.</creator><creator>Nguyen, T. L.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200601</creationdate><title>Imperfect Roll Arrangement Compensation Control based on Neural Network for Web Handling Systems</title><author>Duc, D. N. ; Thi, L. T. ; Nguyen, T. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-bca40ad69f8bc52bc334e90addfcd4b1b1920bb3386a5fa4b5eb12b79fdf4ee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duc, D. N.</creatorcontrib><creatorcontrib>Thi, L. T.</creatorcontrib><creatorcontrib>Nguyen, T. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Engineering, technology &amp; applied science research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duc, D. N.</au><au>Thi, L. T.</au><au>Nguyen, T. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imperfect Roll Arrangement Compensation Control based on Neural Network for Web Handling Systems</atitle><jtitle>Engineering, technology &amp; applied science research</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>10</volume><issue>3</issue><spage>5694</spage><epage>5699</epage><pages>5694-5699</pages><issn>2241-4487</issn><eissn>1792-8036</eissn><abstract>The speed and tension control problem of a web handling system is investigated in this paper. From the system equations of motion, we developed a backstepping-sliding mode control for web speed and tension regulation tasks. It is obvious that the designed control depends heavily on roll inertia information. Dissimilar to other researches that were based on the assumptions of rolls with perfect cylindrical form with the rotating shafts of the rolls considered properly aligned, the novelty of this paper is the presentation of a neural network to compensate the effects of imperfect roll arrangement. The neural network design is based on the Radial Basis Function (RBF) network estimating the uncertainty of roll inertia. The information on estimated inertia is fed into a backstepping-sliding mode controller that ensures tension and velocity tracking. The control design is presented in a systematical approach. Closed loop system stability is proven mathematically. The tracking performance is shown through several simulation scenarios.</abstract><doi>10.48084/etasr.3530</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2241-4487
ispartof Engineering, technology & applied science research, 2020-06, Vol.10 (3), p.5694-5699
issn 2241-4487
1792-8036
language eng
recordid cdi_crossref_primary_10_48084_etasr_3530
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Imperfect Roll Arrangement Compensation Control based on Neural Network for Web Handling Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imperfect%20Roll%20Arrangement%20Compensation%20Control%20based%20on%20Neural%20Network%20for%20Web%20Handling%20Systems&rft.jtitle=Engineering,%20technology%20&%20applied%20science%20research&rft.au=Duc,%20D.%20N.&rft.date=2020-06-01&rft.volume=10&rft.issue=3&rft.spage=5694&rft.epage=5699&rft.pages=5694-5699&rft.issn=2241-4487&rft.eissn=1792-8036&rft_id=info:doi/10.48084/etasr.3530&rft_dat=%3Ccrossref%3E10_48084_etasr_3530%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true