Evaluation of window size in classification of epileptic short-term EEG signals using a Brain Computer Interface software

The complexity of epilepsy created a fertile ground for further research in automated methods, attempting to help the epileptologists’ task. Over the past years, great breakthroughs have emerged in computer-aided analysis and the advent of Brain Computer Interface (BCI) systems has greatly facilitat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering, technology & applied science research technology & applied science research, 2018-08, Vol.8 (4), p.3093-3097
Hauptverfasser: Tzimourta, K. D., Astrakas, L. G., Gianni, A. M., Tzallas, A. T., Giannakeas, N., Paliokas, I., Tsalikakis, D. G., Tsipouras, M. G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3097
container_issue 4
container_start_page 3093
container_title Engineering, technology & applied science research
container_volume 8
creator Tzimourta, K. D.
Astrakas, L. G.
Gianni, A. M.
Tzallas, A. T.
Giannakeas, N.
Paliokas, I.
Tsalikakis, D. G.
Tsipouras, M. G.
description The complexity of epilepsy created a fertile ground for further research in automated methods, attempting to help the epileptologists’ task. Over the past years, great breakthroughs have emerged in computer-aided analysis and the advent of Brain Computer Interface (BCI) systems has greatly facilitated the automated seizure analysis. In this study, an evaluation of the window size in automated seizure detection is proposed. The EEG signals from the University of Bonn was employed and segmented into 24 epochs of different window lengths with 50% overlap each time. Statistical and spectral features were extracted in the OpenViBE scenario that were used to train four different classifiers. Results in terms of accuracy were above 80% for the Decision Trees classifier. Also, results indicated that different window sizes provide small variations in classification accuracy.
doi_str_mv 10.48084/etasr.2031
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_48084_etasr_2031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_48084_etasr_2031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c163t-c533a41d0bf6e6e94407c69464555438cc1920d3d72f16960e5e22b7270b5c923</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EElXpxB_wjlL8FTsZoQqlUiUWmCPHeV2M0jiyHaLy6wkFccPdcnfDg9AtJWtRkELcQ9IxrBnh9AItqCpZVhAuL9GCMUEzIQp1jVYxfpBZspBCsQU6VZ-6G3Vyvsfe4sn1rZ9wdF-AXY9Np2N01pn_AgyugyE5g-O7DylLEI64qrbz5NDrLuIxuv6ANX4Mej7Y-OMwzh2862e32gCO3qZJB7hBV3YewOovl-jtqXrdPGf7l-1u87DPDJU8ZSbnXAvaksZKkFAKQZSRpZAiz3PBC2NoyUjLW8UslaUkkANjjWKKNLkpGV-iu99fE3yMAWw9BHfU4VRTUp_B1Wdw9Q84_g2ZH2K8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluation of window size in classification of epileptic short-term EEG signals using a Brain Computer Interface software</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tzimourta, K. D. ; Astrakas, L. G. ; Gianni, A. M. ; Tzallas, A. T. ; Giannakeas, N. ; Paliokas, I. ; Tsalikakis, D. G. ; Tsipouras, M. G.</creator><creatorcontrib>Tzimourta, K. D. ; Astrakas, L. G. ; Gianni, A. M. ; Tzallas, A. T. ; Giannakeas, N. ; Paliokas, I. ; Tsalikakis, D. G. ; Tsipouras, M. G.</creatorcontrib><description>The complexity of epilepsy created a fertile ground for further research in automated methods, attempting to help the epileptologists’ task. Over the past years, great breakthroughs have emerged in computer-aided analysis and the advent of Brain Computer Interface (BCI) systems has greatly facilitated the automated seizure analysis. In this study, an evaluation of the window size in automated seizure detection is proposed. The EEG signals from the University of Bonn was employed and segmented into 24 epochs of different window lengths with 50% overlap each time. Statistical and spectral features were extracted in the OpenViBE scenario that were used to train four different classifiers. Results in terms of accuracy were above 80% for the Decision Trees classifier. Also, results indicated that different window sizes provide small variations in classification accuracy.</description><identifier>ISSN: 2241-4487</identifier><identifier>EISSN: 1792-8036</identifier><identifier>DOI: 10.48084/etasr.2031</identifier><language>eng</language><ispartof>Engineering, technology &amp; applied science research, 2018-08, Vol.8 (4), p.3093-3097</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c163t-c533a41d0bf6e6e94407c69464555438cc1920d3d72f16960e5e22b7270b5c923</citedby><cites>FETCH-LOGICAL-c163t-c533a41d0bf6e6e94407c69464555438cc1920d3d72f16960e5e22b7270b5c923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Tzimourta, K. D.</creatorcontrib><creatorcontrib>Astrakas, L. G.</creatorcontrib><creatorcontrib>Gianni, A. M.</creatorcontrib><creatorcontrib>Tzallas, A. T.</creatorcontrib><creatorcontrib>Giannakeas, N.</creatorcontrib><creatorcontrib>Paliokas, I.</creatorcontrib><creatorcontrib>Tsalikakis, D. G.</creatorcontrib><creatorcontrib>Tsipouras, M. G.</creatorcontrib><title>Evaluation of window size in classification of epileptic short-term EEG signals using a Brain Computer Interface software</title><title>Engineering, technology &amp; applied science research</title><description>The complexity of epilepsy created a fertile ground for further research in automated methods, attempting to help the epileptologists’ task. Over the past years, great breakthroughs have emerged in computer-aided analysis and the advent of Brain Computer Interface (BCI) systems has greatly facilitated the automated seizure analysis. In this study, an evaluation of the window size in automated seizure detection is proposed. The EEG signals from the University of Bonn was employed and segmented into 24 epochs of different window lengths with 50% overlap each time. Statistical and spectral features were extracted in the OpenViBE scenario that were used to train four different classifiers. Results in terms of accuracy were above 80% for the Decision Trees classifier. Also, results indicated that different window sizes provide small variations in classification accuracy.</description><issn>2241-4487</issn><issn>1792-8036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAYhC0EElXpxB_wjlL8FTsZoQqlUiUWmCPHeV2M0jiyHaLy6wkFccPdcnfDg9AtJWtRkELcQ9IxrBnh9AItqCpZVhAuL9GCMUEzIQp1jVYxfpBZspBCsQU6VZ-6G3Vyvsfe4sn1rZ9wdF-AXY9Np2N01pn_AgyugyE5g-O7DylLEI64qrbz5NDrLuIxuv6ANX4Mej7Y-OMwzh2862e32gCO3qZJB7hBV3YewOovl-jtqXrdPGf7l-1u87DPDJU8ZSbnXAvaksZKkFAKQZSRpZAiz3PBC2NoyUjLW8UslaUkkANjjWKKNLkpGV-iu99fE3yMAWw9BHfU4VRTUp_B1Wdw9Q84_g2ZH2K8</recordid><startdate>20180818</startdate><enddate>20180818</enddate><creator>Tzimourta, K. D.</creator><creator>Astrakas, L. G.</creator><creator>Gianni, A. M.</creator><creator>Tzallas, A. T.</creator><creator>Giannakeas, N.</creator><creator>Paliokas, I.</creator><creator>Tsalikakis, D. G.</creator><creator>Tsipouras, M. G.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180818</creationdate><title>Evaluation of window size in classification of epileptic short-term EEG signals using a Brain Computer Interface software</title><author>Tzimourta, K. D. ; Astrakas, L. G. ; Gianni, A. M. ; Tzallas, A. T. ; Giannakeas, N. ; Paliokas, I. ; Tsalikakis, D. G. ; Tsipouras, M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c163t-c533a41d0bf6e6e94407c69464555438cc1920d3d72f16960e5e22b7270b5c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tzimourta, K. D.</creatorcontrib><creatorcontrib>Astrakas, L. G.</creatorcontrib><creatorcontrib>Gianni, A. M.</creatorcontrib><creatorcontrib>Tzallas, A. T.</creatorcontrib><creatorcontrib>Giannakeas, N.</creatorcontrib><creatorcontrib>Paliokas, I.</creatorcontrib><creatorcontrib>Tsalikakis, D. G.</creatorcontrib><creatorcontrib>Tsipouras, M. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Engineering, technology &amp; applied science research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tzimourta, K. D.</au><au>Astrakas, L. G.</au><au>Gianni, A. M.</au><au>Tzallas, A. T.</au><au>Giannakeas, N.</au><au>Paliokas, I.</au><au>Tsalikakis, D. G.</au><au>Tsipouras, M. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of window size in classification of epileptic short-term EEG signals using a Brain Computer Interface software</atitle><jtitle>Engineering, technology &amp; applied science research</jtitle><date>2018-08-18</date><risdate>2018</risdate><volume>8</volume><issue>4</issue><spage>3093</spage><epage>3097</epage><pages>3093-3097</pages><issn>2241-4487</issn><eissn>1792-8036</eissn><abstract>The complexity of epilepsy created a fertile ground for further research in automated methods, attempting to help the epileptologists’ task. Over the past years, great breakthroughs have emerged in computer-aided analysis and the advent of Brain Computer Interface (BCI) systems has greatly facilitated the automated seizure analysis. In this study, an evaluation of the window size in automated seizure detection is proposed. The EEG signals from the University of Bonn was employed and segmented into 24 epochs of different window lengths with 50% overlap each time. Statistical and spectral features were extracted in the OpenViBE scenario that were used to train four different classifiers. Results in terms of accuracy were above 80% for the Decision Trees classifier. Also, results indicated that different window sizes provide small variations in classification accuracy.</abstract><doi>10.48084/etasr.2031</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2241-4487
ispartof Engineering, technology & applied science research, 2018-08, Vol.8 (4), p.3093-3097
issn 2241-4487
1792-8036
language eng
recordid cdi_crossref_primary_10_48084_etasr_2031
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Evaluation of window size in classification of epileptic short-term EEG signals using a Brain Computer Interface software
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20window%20size%20in%20classification%20of%20epileptic%20short-term%20EEG%20signals%20using%20a%20Brain%20Computer%20Interface%20software&rft.jtitle=Engineering,%20technology%20&%20applied%20science%20research&rft.au=Tzimourta,%20K.%20D.&rft.date=2018-08-18&rft.volume=8&rft.issue=4&rft.spage=3093&rft.epage=3097&rft.pages=3093-3097&rft.issn=2241-4487&rft.eissn=1792-8036&rft_id=info:doi/10.48084/etasr.2031&rft_dat=%3Ccrossref%3E10_48084_etasr_2031%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true