A fundamental inequality for 3-dimensional CAT(ε) hypersurfaces
By J.F. Nash’s Theorem, any Riemannian manifold can be embedded into a Euclidean ambient space with dimension sufficiently large. In 1968, S.-S. Chern pointed out that a key technical element in applying Nash’s Theorem effectively is finding useful relationships between intrinsic and extrinsic eleme...
Gespeichert in:
Veröffentlicht in: | Analele ştiinţifice ale Universitatii "Al. I. Cuza" din Iaşi. Secţiunea 1a: Matematicǎ 2024, Vol.70 (1), p.83-87 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | 1 |
container_start_page | 83 |
container_title | Analele ştiinţifice ale Universitatii "Al. I. Cuza" din Iaşi. Secţiunea 1a: Matematicǎ |
container_volume | 70 |
creator | Suceavă, Bogdan D. |
description | By J.F. Nash’s Theorem, any Riemannian manifold can be embedded into a
Euclidean ambient space with dimension sufficiently large. In 1968, S.-S. Chern pointed
out that a key technical element in applying Nash’s Theorem effectively is finding useful
relationships between intrinsic and extrinsic elements that are characterizing immersions.
After 1993, when a groundbreaking work written by B.-Y. Chen on this theme was published, many explorations pursued this important avenue of inquiry. Bearing in mind this
historical context, in our present paper we point out a new relationship involving intrinsic
and extrinsic curvature invariants, under natural geometric conditions. We conclude our
work with an obstruction to minimality, in the spirit of S.-S. Chern’s reflection from 1968. |
doi_str_mv | 10.47743/anstim.2024.00006 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_47743_anstim_2024_00006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_47743_anstim_2024_00006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c876-103428a6da87436c8c4a035bd065c49cd0b64064123c0a36d4b7c12632f1b3f53</originalsourceid><addsrcrecordid>eNotkDtOxDAYhC0EEtGyF6BKCUWCH38cb0cUwYK0Ek16y_FDGOWx2EmRg3ENzkR2l2mmmNFo9CF0T3AOZQnsSQ1x8n1OMYUcr-JXKKEMIIMdL69RQiglmQBKbtE2xq9ThQlR8CJBz1Xq5sGo3g6T6lI_2O9ZdX5aUjeGlGXGr0n047CGddU8_P48pp_L0YY4B6e0jXfoxqku2u2_b1Dz-tLUb9nhY_9eV4dMi5JnBDOgQnGjxHqYa6FBYVa0BvNCw04b3HLAHAhlGivGDbSlJpQz6kjLXME2iF5mdRhjDNbJY_C9CoskWJ4pyAsFeaIgzxTYH07vUOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A fundamental inequality for 3-dimensional CAT(ε) hypersurfaces</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Suceavă, Bogdan D.</creator><creatorcontrib>Suceavă, Bogdan D.</creatorcontrib><description>By J.F. Nash’s Theorem, any Riemannian manifold can be embedded into a
Euclidean ambient space with dimension sufficiently large. In 1968, S.-S. Chern pointed
out that a key technical element in applying Nash’s Theorem effectively is finding useful
relationships between intrinsic and extrinsic elements that are characterizing immersions.
After 1993, when a groundbreaking work written by B.-Y. Chen on this theme was published, many explorations pursued this important avenue of inquiry. Bearing in mind this
historical context, in our present paper we point out a new relationship involving intrinsic
and extrinsic curvature invariants, under natural geometric conditions. We conclude our
work with an obstruction to minimality, in the spirit of S.-S. Chern’s reflection from 1968.</description><identifier>ISSN: 1221-8421</identifier><identifier>EISSN: 2344-4967</identifier><identifier>DOI: 10.47743/anstim.2024.00006</identifier><language>eng</language><ispartof>Analele ştiinţifice ale Universitatii "Al. I. Cuza" din Iaşi. Secţiunea 1a: Matematicǎ, 2024, Vol.70 (1), p.83-87</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Suceavă, Bogdan D.</creatorcontrib><title>A fundamental inequality for 3-dimensional CAT(ε) hypersurfaces</title><title>Analele ştiinţifice ale Universitatii "Al. I. Cuza" din Iaşi. Secţiunea 1a: Matematicǎ</title><description>By J.F. Nash’s Theorem, any Riemannian manifold can be embedded into a
Euclidean ambient space with dimension sufficiently large. In 1968, S.-S. Chern pointed
out that a key technical element in applying Nash’s Theorem effectively is finding useful
relationships between intrinsic and extrinsic elements that are characterizing immersions.
After 1993, when a groundbreaking work written by B.-Y. Chen on this theme was published, many explorations pursued this important avenue of inquiry. Bearing in mind this
historical context, in our present paper we point out a new relationship involving intrinsic
and extrinsic curvature invariants, under natural geometric conditions. We conclude our
work with an obstruction to minimality, in the spirit of S.-S. Chern’s reflection from 1968.</description><issn>1221-8421</issn><issn>2344-4967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkDtOxDAYhC0EEtGyF6BKCUWCH38cb0cUwYK0Ek16y_FDGOWx2EmRg3ENzkR2l2mmmNFo9CF0T3AOZQnsSQ1x8n1OMYUcr-JXKKEMIIMdL69RQiglmQBKbtE2xq9ThQlR8CJBz1Xq5sGo3g6T6lI_2O9ZdX5aUjeGlGXGr0n047CGddU8_P48pp_L0YY4B6e0jXfoxqku2u2_b1Dz-tLUb9nhY_9eV4dMi5JnBDOgQnGjxHqYa6FBYVa0BvNCw04b3HLAHAhlGivGDbSlJpQz6kjLXME2iF5mdRhjDNbJY_C9CoskWJ4pyAsFeaIgzxTYH07vUOQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Suceavă, Bogdan D.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>A fundamental inequality for 3-dimensional CAT(ε) hypersurfaces</title><author>Suceavă, Bogdan D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c876-103428a6da87436c8c4a035bd065c49cd0b64064123c0a36d4b7c12632f1b3f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suceavă, Bogdan D.</creatorcontrib><collection>CrossRef</collection><jtitle>Analele ştiinţifice ale Universitatii "Al. I. Cuza" din Iaşi. Secţiunea 1a: Matematicǎ</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suceavă, Bogdan D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fundamental inequality for 3-dimensional CAT(ε) hypersurfaces</atitle><jtitle>Analele ştiinţifice ale Universitatii "Al. I. Cuza" din Iaşi. Secţiunea 1a: Matematicǎ</jtitle><date>2024</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>83</spage><epage>87</epage><pages>83-87</pages><issn>1221-8421</issn><eissn>2344-4967</eissn><abstract>By J.F. Nash’s Theorem, any Riemannian manifold can be embedded into a
Euclidean ambient space with dimension sufficiently large. In 1968, S.-S. Chern pointed
out that a key technical element in applying Nash’s Theorem effectively is finding useful
relationships between intrinsic and extrinsic elements that are characterizing immersions.
After 1993, when a groundbreaking work written by B.-Y. Chen on this theme was published, many explorations pursued this important avenue of inquiry. Bearing in mind this
historical context, in our present paper we point out a new relationship involving intrinsic
and extrinsic curvature invariants, under natural geometric conditions. We conclude our
work with an obstruction to minimality, in the spirit of S.-S. Chern’s reflection from 1968.</abstract><doi>10.47743/anstim.2024.00006</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1221-8421 |
ispartof | Analele ştiinţifice ale Universitatii "Al. I. Cuza" din Iaşi. Secţiunea 1a: Matematicǎ, 2024, Vol.70 (1), p.83-87 |
issn | 1221-8421 2344-4967 |
language | eng |
recordid | cdi_crossref_primary_10_47743_anstim_2024_00006 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | A fundamental inequality for 3-dimensional CAT(ε) hypersurfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fundamental%20inequality%20for%203-dimensional%20CAT(%CE%B5)%20hypersurfaces&rft.jtitle=Analele%20%C5%9Ftiin%C5%A3ifice%20ale%20Universitatii%20%22Al.%20I.%20Cuza%22%20din%20Ia%C5%9Fi.%20Sec%C5%A3iunea%201a:%20Matematic%C7%8E&rft.au=Suceav%C4%83,%20Bogdan%20D.&rft.date=2024&rft.volume=70&rft.issue=1&rft.spage=83&rft.epage=87&rft.pages=83-87&rft.issn=1221-8421&rft.eissn=2344-4967&rft_id=info:doi/10.47743/anstim.2024.00006&rft_dat=%3Ccrossref%3E10_47743_anstim_2024_00006%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |