Одно замечание о периодических кольцах

We obtain a new and non-trivial characterization of periodic rings (that are those rings $R$ for which, for each element $x$ in $R$, there exists two different integers $m$, $n$ strictly greater than $1$ with the property $x^m=x^n$) in terms of nilpotent elements which supplies recent results in thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vladikavkazskiĭ matematicheskiĭ zhurnal 2021-12 (4), p.109-111
1. Verfasser: Danchev, P.V.
Format: Artikel
Sprache:rus
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain a new and non-trivial characterization of periodic rings (that are those rings $R$ for which, for each element $x$ in $R$, there exists two different integers $m$, $n$ strictly greater than $1$ with the property $x^m=x^n$) in terms of nilpotent elements which supplies recent results in this subject by Cui--Danchev published in (J. Algebra \& Appl., 2020) and by Abyzov--Tapkin published in (J. Algebra \& Appl., 2022). Concretely, we state and prove the slightly surprising fact that an arbitrary ring $R$ is periodic if, and only if, for every element~$x$ from $R$, there are integers $m>1$ and $n>1$ with $m\not= n$ such that the difference $x^m-x^n$ is a nilpotent.
ISSN:1683-3414
1814-0807
DOI:10.46698/q0369-3594-2531-z