Одно замечание о периодических кольцах
We obtain a new and non-trivial characterization of periodic rings (that are those rings $R$ for which, for each element $x$ in $R$, there exists two different integers $m$, $n$ strictly greater than $1$ with the property $x^m=x^n$) in terms of nilpotent elements which supplies recent results in thi...
Gespeichert in:
Veröffentlicht in: | Vladikavkazskiĭ matematicheskiĭ zhurnal 2021-12 (4), p.109-111 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | rus |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain a new and non-trivial characterization of
periodic rings (that are those rings $R$ for which, for each
element $x$ in $R$, there exists two different integers $m$, $n$
strictly greater than $1$ with the property $x^m=x^n$) in terms of
nilpotent elements which supplies recent results in this subject by
Cui--Danchev published in (J. Algebra \& Appl., 2020) and by
Abyzov--Tapkin published in (J. Algebra \& Appl., 2022). Concretely,
we state and prove the slightly surprising fact that an arbitrary
ring $R$ is periodic if, and only if, for every element~$x$
from $R$, there are integers $m>1$ and $n>1$ with $m\not= n$ such
that the difference $x^m-x^n$ is a nilpotent. |
---|---|
ISSN: | 1683-3414 1814-0807 |
DOI: | 10.46698/q0369-3594-2531-z |