Predicting Student Success in Co-remediated General Education Mathematics Courses at a Large Urban Public University

Placement and support of students in first-year mathematics courses at institutions of higher education has long been a consequential issue. In a bid to address it, many systems and institutions of higher learning have elected to implement a co-remediation framework in place of pre-remediation, due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of education in mathematics, science and technology science and technology, 2023-01, Vol.11 (3), p.586-611
Hauptverfasser: Miller, Kirsten L., Suaray, Kagba N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Placement and support of students in first-year mathematics courses at institutions of higher education has long been a consequential issue. In a bid to address it, many systems and institutions of higher learning have elected to implement a co-remediation framework in place of pre-remediation, due in large part to the prohibitive cost of the latter, both in terms of financial resource, as well as student academic progress. Accompanying this evolution has been the expansion of the introductory mathematics curriculum beyond algebra to include statistics and quantitative reasoning. The present study discusses three distinct introductory mathematics courses at a large urban public M.S. granting institution in the U.S., with the goal of identifying the characteristics that correlate with success in each. Conditional probability and non-completion rate analyses were implemented to compare student performance in each course. Predictive models were then trained and validated, building insight concerning the differential relationships of demographic and academic covariates with course completion.
ISSN:2147-611X
2147-611X
DOI:10.46328/ijemst.2782