Extensions of curves with high degree with respect to the genus

We classify linearly normal surfaces $S \subset \mathbf{P}^{r+1}$ of degree $d$ such that $4g-4 \leq d \leq 4g+4$, where $g>1$ is the sectional genus (it is a classical result that for larger $d$ there are only cones). We apply this to the study of the extension theory of pluricanonical curves an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Épijournal de géométrie algébrique 2024-07, Vol.Special volume in honour of...
Hauptverfasser: Ciliberto, Ciro, Dedieu, Thomas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Épijournal de géométrie algébrique
container_volume Special volume in honour of...
creator Ciliberto, Ciro
Dedieu, Thomas
description We classify linearly normal surfaces $S \subset \mathbf{P}^{r+1}$ of degree $d$ such that $4g-4 \leq d \leq 4g+4$, where $g>1$ is the sectional genus (it is a classical result that for larger $d$ there are only cones). We apply this to the study of the extension theory of pluricanonical curves and genus $3$ curves, whenever they verify Property $N_2$, using and slightly expanding the theory of integration of ribbons of the authors and E.~Sernesi. We compute the corank of the relevant Gaussian maps, and we show that all ribbons over such curves are integrable, and thus there exists a universal extension. We carry out a similar program for linearly normal hyperelliptic curves of degree $d\geq 2g+3$. We classify surfaces having such a curve $C$ as a hyperplane section, compute the corank of the relevant Gaussian maps, and prove that all ribbons over $C$ are integrable if and only if $d=2g+3$. In the latter case we obtain the existence of a universal extension. Comment: v2: various complements with respect to v1; v3: correction in the statement of Hartshorne's Theorem 2.5: v4: final version
doi_str_mv 10.46298/epiga.2024.11202
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_46298_epiga_2024_11202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_46298_epiga_2024_11202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c852-5cbfca7c37018971002ab8becf8abb9066d3597c493f97e64928450d9d8c802b3</originalsourceid><addsrcrecordid>eNpNkMtKxDAYhYMoOIzzAO7yAq1JmuayEhlGHRhwM_uQpH_aiLYl6Xh5e2vHhatzOIvDx4fQLSUlF0yrOxhja0tGGC8pneMCrRjXtBBS1Jf_-jXa5PxKCGGM11rKFbrffU3Q5zj0GQ8B-1P6gIw_49ThLrYdbqBNAOchQR7BT3ga8NQBbqE_5Rt0Fexbhs1frtHxcXfcPheHl6f99uFQeFWzovYueCt9JQlVWtIZwDrlwAdlndNEiKaaeTzXVdASBNdM8Zo0ulFeEeaqNaLnW5-GnBMEM6b4btO3ocQsDsziwPw6MIuD6gdWnVAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extensions of curves with high degree with respect to the genus</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ciliberto, Ciro ; Dedieu, Thomas</creator><creatorcontrib>Ciliberto, Ciro ; Dedieu, Thomas</creatorcontrib><description>We classify linearly normal surfaces $S \subset \mathbf{P}^{r+1}$ of degree $d$ such that $4g-4 \leq d \leq 4g+4$, where $g&gt;1$ is the sectional genus (it is a classical result that for larger $d$ there are only cones). We apply this to the study of the extension theory of pluricanonical curves and genus $3$ curves, whenever they verify Property $N_2$, using and slightly expanding the theory of integration of ribbons of the authors and E.~Sernesi. We compute the corank of the relevant Gaussian maps, and we show that all ribbons over such curves are integrable, and thus there exists a universal extension. We carry out a similar program for linearly normal hyperelliptic curves of degree $d\geq 2g+3$. We classify surfaces having such a curve $C$ as a hyperplane section, compute the corank of the relevant Gaussian maps, and prove that all ribbons over $C$ are integrable if and only if $d=2g+3$. In the latter case we obtain the existence of a universal extension. Comment: v2: various complements with respect to v1; v3: correction in the statement of Hartshorne's Theorem 2.5: v4: final version</description><identifier>ISSN: 2491-6765</identifier><identifier>EISSN: 2491-6765</identifier><identifier>DOI: 10.46298/epiga.2024.11202</identifier><language>eng</language><ispartof>Épijournal de géométrie algébrique, 2024-07, Vol.Special volume in honour of...</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids></links><search><creatorcontrib>Ciliberto, Ciro</creatorcontrib><creatorcontrib>Dedieu, Thomas</creatorcontrib><title>Extensions of curves with high degree with respect to the genus</title><title>Épijournal de géométrie algébrique</title><description>We classify linearly normal surfaces $S \subset \mathbf{P}^{r+1}$ of degree $d$ such that $4g-4 \leq d \leq 4g+4$, where $g&gt;1$ is the sectional genus (it is a classical result that for larger $d$ there are only cones). We apply this to the study of the extension theory of pluricanonical curves and genus $3$ curves, whenever they verify Property $N_2$, using and slightly expanding the theory of integration of ribbons of the authors and E.~Sernesi. We compute the corank of the relevant Gaussian maps, and we show that all ribbons over such curves are integrable, and thus there exists a universal extension. We carry out a similar program for linearly normal hyperelliptic curves of degree $d\geq 2g+3$. We classify surfaces having such a curve $C$ as a hyperplane section, compute the corank of the relevant Gaussian maps, and prove that all ribbons over $C$ are integrable if and only if $d=2g+3$. In the latter case we obtain the existence of a universal extension. Comment: v2: various complements with respect to v1; v3: correction in the statement of Hartshorne's Theorem 2.5: v4: final version</description><issn>2491-6765</issn><issn>2491-6765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKxDAYhYMoOIzzAO7yAq1JmuayEhlGHRhwM_uQpH_aiLYl6Xh5e2vHhatzOIvDx4fQLSUlF0yrOxhja0tGGC8pneMCrRjXtBBS1Jf_-jXa5PxKCGGM11rKFbrffU3Q5zj0GQ8B-1P6gIw_49ThLrYdbqBNAOchQR7BT3ga8NQBbqE_5Rt0Fexbhs1frtHxcXfcPheHl6f99uFQeFWzovYueCt9JQlVWtIZwDrlwAdlndNEiKaaeTzXVdASBNdM8Zo0ulFeEeaqNaLnW5-GnBMEM6b4btO3ocQsDsziwPw6MIuD6gdWnVAU</recordid><startdate>20240709</startdate><enddate>20240709</enddate><creator>Ciliberto, Ciro</creator><creator>Dedieu, Thomas</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240709</creationdate><title>Extensions of curves with high degree with respect to the genus</title><author>Ciliberto, Ciro ; Dedieu, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c852-5cbfca7c37018971002ab8becf8abb9066d3597c493f97e64928450d9d8c802b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciliberto, Ciro</creatorcontrib><creatorcontrib>Dedieu, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Épijournal de géométrie algébrique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciliberto, Ciro</au><au>Dedieu, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extensions of curves with high degree with respect to the genus</atitle><jtitle>Épijournal de géométrie algébrique</jtitle><date>2024-07-09</date><risdate>2024</risdate><volume>Special volume in honour of...</volume><issn>2491-6765</issn><eissn>2491-6765</eissn><abstract>We classify linearly normal surfaces $S \subset \mathbf{P}^{r+1}$ of degree $d$ such that $4g-4 \leq d \leq 4g+4$, where $g&gt;1$ is the sectional genus (it is a classical result that for larger $d$ there are only cones). We apply this to the study of the extension theory of pluricanonical curves and genus $3$ curves, whenever they verify Property $N_2$, using and slightly expanding the theory of integration of ribbons of the authors and E.~Sernesi. We compute the corank of the relevant Gaussian maps, and we show that all ribbons over such curves are integrable, and thus there exists a universal extension. We carry out a similar program for linearly normal hyperelliptic curves of degree $d\geq 2g+3$. We classify surfaces having such a curve $C$ as a hyperplane section, compute the corank of the relevant Gaussian maps, and prove that all ribbons over $C$ are integrable if and only if $d=2g+3$. In the latter case we obtain the existence of a universal extension. Comment: v2: various complements with respect to v1; v3: correction in the statement of Hartshorne's Theorem 2.5: v4: final version</abstract><doi>10.46298/epiga.2024.11202</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2491-6765
ispartof Épijournal de géométrie algébrique, 2024-07, Vol.Special volume in honour of...
issn 2491-6765
2491-6765
language eng
recordid cdi_crossref_primary_10_46298_epiga_2024_11202
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Extensions of curves with high degree with respect to the genus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extensions%20of%20curves%20with%20high%20degree%20with%20respect%20to%20the%20genus&rft.jtitle=%C3%89pijournal%20de%20g%C3%A9om%C3%A9trie%20alg%C3%A9brique&rft.au=Ciliberto,%20Ciro&rft.date=2024-07-09&rft.volume=Special%20volume%20in%20honour%20of...&rft.issn=2491-6765&rft.eissn=2491-6765&rft_id=info:doi/10.46298/epiga.2024.11202&rft_dat=%3Ccrossref%3E10_46298_epiga_2024_11202%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true