Formulation of Sodium Alginate Nanospheres Containing Amphotericin B for the Treatment of Systemic Candidiasis

Purpose: The aim of this work was to formulate sodium alginate nanospheres of amphotericin B by controlled gellification method and to evaluate the role of the nanospheres as a "passive carrier" in targeted antifungal therapy. Methods: Sodium alginate nanospheres of amphotericin B were pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tropical journal of pharmaceutical research 2007-07, Vol.6 (1)
Hauptverfasser: Shanmugasundaram, Sangeetha, Dhandapani, Nagasamy Venkatesh, Rajendran, Adhiyaman, Kumaraswamy, Santhi, Bhojraj, Suresh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Tropical journal of pharmaceutical research
container_volume 6
creator Shanmugasundaram, Sangeetha
Dhandapani, Nagasamy Venkatesh
Rajendran, Adhiyaman
Kumaraswamy, Santhi
Bhojraj, Suresh
description Purpose: The aim of this work was to formulate sodium alginate nanospheres of amphotericin B by controlled gellification method and to evaluate the role of the nanospheres as a "passive carrier" in targeted antifungal therapy. Methods: Sodium alginate nanospheres of amphotericin B were prepared by controlled gellification method, and the particle size analysis was carried out by scanning electron microscopy. The carrier capacity of sodium alginate was evaluated in terms of drug to polymer ratio. In vitro release study was carried out on all drug loaded nanospheres by the dialysis method. Release kinetics of drug from different drug loaded nanospheres was also determined. The in vivo antifungal efficacy of nanospheres bound drug vis-à-vis the free drug was evaluated in candidiasis- induced mice models. Results: Preparation of nanospheres through controlled gellification method yielded particles with a size range of 419.6 ± 0.28 nm. Studies on drug to polymer ratio showed a linear relationship between concentration of drug and drug loading capacity. In vitro release kinetic study revealed that the release of drug from the nanospheres followed Fickian diffusion. In vivo studies showed that the nanospherebound drug produced a higher antifungal efficacy than the free drug. Conclusion: The formulated sodium alginate nanospheres containing amphotericin B was found to have better antifungal activity when compared to the free drug and also yielded sustained in vitro release.
doi_str_mv 10.4314/tjpr.v6i1.14643
format Article
fullrecord <record><control><sourceid>bioline_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4314_tjpr_v6i1_14643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>cria_bioline_pr_pr07004</sourcerecordid><originalsourceid>FETCH-LOGICAL-b251t-f6b877fc3fd8eaad430af1c03da45cab8c8207c1a94e791cfe23e1a8e2d74a633</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMoWKtrt_kD0yaTzGtZB6tC0YV1PdzJJO0tM8mQpEL_vfaBwoF7uPCdxUfII2czKbicx93oZ9858hmXuRRXZMKzKk-qMi2uLz2rqvyW3IWwYyzLq4pPiF06P-x7iOgsdYZ-ug73A130G7QQNX0H68K41V4HWjsbAS3aDV0M49ZF7VGhpU_UOE_jVtO11xAHbeNp6hCiHlDRGmyHHULAcE9uDPRBP1zulHwtn9f1a7L6eHmrF6ukTTMeE5O3ZVEYJUxXaoBOCgaGKyY6kJmCtlRlygrFoZK6qLgyOhWaQ6nTrpCQCzEl8_Ou8i4Er00zehzAHxrOmqOu5qirOepqTrp-idmZaNH1aPUfoDxC8__8DSsYk-IHaFdz0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Formulation of Sodium Alginate Nanospheres Containing Amphotericin B for the Treatment of Systemic Candidiasis</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>African Journals Online (Open Access)</source><source>Bioline International</source><source>Free Full-Text Journals in Chemistry</source><creator>Shanmugasundaram, Sangeetha ; Dhandapani, Nagasamy Venkatesh ; Rajendran, Adhiyaman ; Kumaraswamy, Santhi ; Bhojraj, Suresh</creator><creatorcontrib>Shanmugasundaram, Sangeetha ; Dhandapani, Nagasamy Venkatesh ; Rajendran, Adhiyaman ; Kumaraswamy, Santhi ; Bhojraj, Suresh</creatorcontrib><description>Purpose: The aim of this work was to formulate sodium alginate nanospheres of amphotericin B by controlled gellification method and to evaluate the role of the nanospheres as a "passive carrier" in targeted antifungal therapy. Methods: Sodium alginate nanospheres of amphotericin B were prepared by controlled gellification method, and the particle size analysis was carried out by scanning electron microscopy. The carrier capacity of sodium alginate was evaluated in terms of drug to polymer ratio. In vitro release study was carried out on all drug loaded nanospheres by the dialysis method. Release kinetics of drug from different drug loaded nanospheres was also determined. The in vivo antifungal efficacy of nanospheres bound drug vis-à-vis the free drug was evaluated in candidiasis- induced mice models. Results: Preparation of nanospheres through controlled gellification method yielded particles with a size range of 419.6 ± 0.28 nm. Studies on drug to polymer ratio showed a linear relationship between concentration of drug and drug loading capacity. In vitro release kinetic study revealed that the release of drug from the nanospheres followed Fickian diffusion. In vivo studies showed that the nanospherebound drug produced a higher antifungal efficacy than the free drug. Conclusion: The formulated sodium alginate nanospheres containing amphotericin B was found to have better antifungal activity when compared to the free drug and also yielded sustained in vitro release.</description><identifier>ISSN: 1596-5996</identifier><identifier>EISSN: 1596-9827</identifier><identifier>DOI: 10.4314/tjpr.v6i1.14643</identifier><language>eng</language><publisher>Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria</publisher><subject>Nanospheres, sodium alginate, amphotericin B, controlled gellification method, in vitro &amp; in vivo release</subject><ispartof>Tropical journal of pharmaceutical research, 2007-07, Vol.6 (1)</ispartof><rights>Copyright 2007. TJPR Faculty of Pharmacy, University of Benin, Benin City, Nigeria</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b251t-f6b877fc3fd8eaad430af1c03da45cab8c8207c1a94e791cfe23e1a8e2d74a633</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27928,27929,79430</link.rule.ids></links><search><creatorcontrib>Shanmugasundaram, Sangeetha</creatorcontrib><creatorcontrib>Dhandapani, Nagasamy Venkatesh</creatorcontrib><creatorcontrib>Rajendran, Adhiyaman</creatorcontrib><creatorcontrib>Kumaraswamy, Santhi</creatorcontrib><creatorcontrib>Bhojraj, Suresh</creatorcontrib><title>Formulation of Sodium Alginate Nanospheres Containing Amphotericin B for the Treatment of Systemic Candidiasis</title><title>Tropical journal of pharmaceutical research</title><description>Purpose: The aim of this work was to formulate sodium alginate nanospheres of amphotericin B by controlled gellification method and to evaluate the role of the nanospheres as a "passive carrier" in targeted antifungal therapy. Methods: Sodium alginate nanospheres of amphotericin B were prepared by controlled gellification method, and the particle size analysis was carried out by scanning electron microscopy. The carrier capacity of sodium alginate was evaluated in terms of drug to polymer ratio. In vitro release study was carried out on all drug loaded nanospheres by the dialysis method. Release kinetics of drug from different drug loaded nanospheres was also determined. The in vivo antifungal efficacy of nanospheres bound drug vis-à-vis the free drug was evaluated in candidiasis- induced mice models. Results: Preparation of nanospheres through controlled gellification method yielded particles with a size range of 419.6 ± 0.28 nm. Studies on drug to polymer ratio showed a linear relationship between concentration of drug and drug loading capacity. In vitro release kinetic study revealed that the release of drug from the nanospheres followed Fickian diffusion. In vivo studies showed that the nanospherebound drug produced a higher antifungal efficacy than the free drug. Conclusion: The formulated sodium alginate nanospheres containing amphotericin B was found to have better antifungal activity when compared to the free drug and also yielded sustained in vitro release.</description><subject>Nanospheres, sodium alginate, amphotericin B, controlled gellification method, in vitro &amp; in vivo release</subject><issn>1596-5996</issn><issn>1596-9827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RBI</sourceid><recordid>eNpFkEtLAzEUhYMoWKtrt_kD0yaTzGtZB6tC0YV1PdzJJO0tM8mQpEL_vfaBwoF7uPCdxUfII2czKbicx93oZ9858hmXuRRXZMKzKk-qMi2uLz2rqvyW3IWwYyzLq4pPiF06P-x7iOgsdYZ-ug73A130G7QQNX0H68K41V4HWjsbAS3aDV0M49ZF7VGhpU_UOE_jVtO11xAHbeNp6hCiHlDRGmyHHULAcE9uDPRBP1zulHwtn9f1a7L6eHmrF6ukTTMeE5O3ZVEYJUxXaoBOCgaGKyY6kJmCtlRlygrFoZK6qLgyOhWaQ6nTrpCQCzEl8_Ou8i4Er00zehzAHxrOmqOu5qirOepqTrp-idmZaNH1aPUfoDxC8__8DSsYk-IHaFdz0g</recordid><startdate>20070731</startdate><enddate>20070731</enddate><creator>Shanmugasundaram, Sangeetha</creator><creator>Dhandapani, Nagasamy Venkatesh</creator><creator>Rajendran, Adhiyaman</creator><creator>Kumaraswamy, Santhi</creator><creator>Bhojraj, Suresh</creator><general>Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria</general><scope>RBI</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070731</creationdate><title>Formulation of Sodium Alginate Nanospheres Containing Amphotericin B for the Treatment of Systemic Candidiasis</title><author>Shanmugasundaram, Sangeetha ; Dhandapani, Nagasamy Venkatesh ; Rajendran, Adhiyaman ; Kumaraswamy, Santhi ; Bhojraj, Suresh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b251t-f6b877fc3fd8eaad430af1c03da45cab8c8207c1a94e791cfe23e1a8e2d74a633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Nanospheres, sodium alginate, amphotericin B, controlled gellification method, in vitro &amp; in vivo release</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shanmugasundaram, Sangeetha</creatorcontrib><creatorcontrib>Dhandapani, Nagasamy Venkatesh</creatorcontrib><creatorcontrib>Rajendran, Adhiyaman</creatorcontrib><creatorcontrib>Kumaraswamy, Santhi</creatorcontrib><creatorcontrib>Bhojraj, Suresh</creatorcontrib><collection>Bioline International</collection><collection>CrossRef</collection><jtitle>Tropical journal of pharmaceutical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shanmugasundaram, Sangeetha</au><au>Dhandapani, Nagasamy Venkatesh</au><au>Rajendran, Adhiyaman</au><au>Kumaraswamy, Santhi</au><au>Bhojraj, Suresh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formulation of Sodium Alginate Nanospheres Containing Amphotericin B for the Treatment of Systemic Candidiasis</atitle><jtitle>Tropical journal of pharmaceutical research</jtitle><date>2007-07-31</date><risdate>2007</risdate><volume>6</volume><issue>1</issue><issn>1596-5996</issn><eissn>1596-9827</eissn><abstract>Purpose: The aim of this work was to formulate sodium alginate nanospheres of amphotericin B by controlled gellification method and to evaluate the role of the nanospheres as a "passive carrier" in targeted antifungal therapy. Methods: Sodium alginate nanospheres of amphotericin B were prepared by controlled gellification method, and the particle size analysis was carried out by scanning electron microscopy. The carrier capacity of sodium alginate was evaluated in terms of drug to polymer ratio. In vitro release study was carried out on all drug loaded nanospheres by the dialysis method. Release kinetics of drug from different drug loaded nanospheres was also determined. The in vivo antifungal efficacy of nanospheres bound drug vis-à-vis the free drug was evaluated in candidiasis- induced mice models. Results: Preparation of nanospheres through controlled gellification method yielded particles with a size range of 419.6 ± 0.28 nm. Studies on drug to polymer ratio showed a linear relationship between concentration of drug and drug loading capacity. In vitro release kinetic study revealed that the release of drug from the nanospheres followed Fickian diffusion. In vivo studies showed that the nanospherebound drug produced a higher antifungal efficacy than the free drug. Conclusion: The formulated sodium alginate nanospheres containing amphotericin B was found to have better antifungal activity when compared to the free drug and also yielded sustained in vitro release.</abstract><pub>Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria</pub><doi>10.4314/tjpr.v6i1.14643</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1596-5996
ispartof Tropical journal of pharmaceutical research, 2007-07, Vol.6 (1)
issn 1596-5996
1596-9827
language eng
recordid cdi_crossref_primary_10_4314_tjpr_v6i1_14643
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; African Journals Online (Open Access); Bioline International; Free Full-Text Journals in Chemistry
subjects Nanospheres, sodium alginate, amphotericin B, controlled gellification method, in vitro & in vivo release
title Formulation of Sodium Alginate Nanospheres Containing Amphotericin B for the Treatment of Systemic Candidiasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-bioline_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formulation%20of%20Sodium%20Alginate%20Nanospheres%20Containing%20Amphotericin%20B%20for%20the%20Treatment%20of%20Systemic%20Candidiasis&rft.jtitle=Tropical%20journal%20of%20pharmaceutical%20research&rft.au=Shanmugasundaram,%20Sangeetha&rft.date=2007-07-31&rft.volume=6&rft.issue=1&rft.issn=1596-5996&rft.eissn=1596-9827&rft_id=info:doi/10.4314/tjpr.v6i1.14643&rft_dat=%3Cbioline_cross%3Ecria_bioline_pr_pr07004%3C/bioline_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true