A bi‐stream transformer for single‐image dehazing

Deep‐learning methods, such as encoder–decoder networks, have achieved impressive results in image dehazing. However, these methods often rely only on synthesized data for training that limits their generalizability to hazy, real‐world images. To leverage prior knowledge of haze properties, we propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ETRI journal 2024-11
Hauptverfasser: Wang, Mingrui, Yan, Jinqiang, Wan, Chaoying, Yang, Guowei, Yu, Teng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title ETRI journal
container_volume
creator Wang, Mingrui
Yan, Jinqiang
Wan, Chaoying
Yang, Guowei
Yu, Teng
description Deep‐learning methods, such as encoder–decoder networks, have achieved impressive results in image dehazing. However, these methods often rely only on synthesized data for training that limits their generalizability to hazy, real‐world images. To leverage prior knowledge of haze properties, we propose a bi‐encoder structure that integrates a prior‐based encoder into a traditional encoder–decoder network. The features from both encoders were fused using a feature enhancement module. We adopted transformer blocks instead of convolutions to model local feature associations. Experimental results demonstrate that our method surpasses state‐of‐the‐art methods for synthesized and actual hazy scenes. Therefore, we believe that our method will be a useful supplement to the collection of current artificial intelligence models and will benefit engineering applications in computer vision.
doi_str_mv 10.4218/etrij.2024-0037
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4218_etrij_2024_0037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4218_etrij_2024_0037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c125t-fab4872589a2c89d07a77316a4ca0031e717e45ce527e52615943a52e2bddce53</originalsourceid><addsrcrecordid>eNotj01OwzAUhC1EJULLmq0v4NZ-tuNkWVX8VKrEBtbWi_NSUjUtsrOBFUfgjJwEB1iMRpqRRvMxdqvk0oCqVjTG_rAECUZIqd0FKwC0Fk5DeckKBWBFaUp9xa5TOkgJ0tiqYHbNm_778yuNkXDgY8RT6s5xoMiz8dSf9kfKfT_gnnhLr_iRowWbdXhMdPPvc_Zyf_e8eRS7p4ftZr0TQYEdRYeNqRzYqkYIVd1Kh85pVaIJmD8qcsqRsYEsuKxS2dpotEDQtG1O9Zyt_nZDPKcUqfNvMT-J715JP1H7X2o_UfuJWv8Ai9lNFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A bi‐stream transformer for single‐image dehazing</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Mingrui ; Yan, Jinqiang ; Wan, Chaoying ; Yang, Guowei ; Yu, Teng</creator><creatorcontrib>Wang, Mingrui ; Yan, Jinqiang ; Wan, Chaoying ; Yang, Guowei ; Yu, Teng</creatorcontrib><description>Deep‐learning methods, such as encoder–decoder networks, have achieved impressive results in image dehazing. However, these methods often rely only on synthesized data for training that limits their generalizability to hazy, real‐world images. To leverage prior knowledge of haze properties, we propose a bi‐encoder structure that integrates a prior‐based encoder into a traditional encoder–decoder network. The features from both encoders were fused using a feature enhancement module. We adopted transformer blocks instead of convolutions to model local feature associations. Experimental results demonstrate that our method surpasses state‐of‐the‐art methods for synthesized and actual hazy scenes. Therefore, we believe that our method will be a useful supplement to the collection of current artificial intelligence models and will benefit engineering applications in computer vision.</description><identifier>ISSN: 1225-6463</identifier><identifier>EISSN: 2233-7326</identifier><identifier>DOI: 10.4218/etrij.2024-0037</identifier><language>eng</language><ispartof>ETRI journal, 2024-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c125t-fab4872589a2c89d07a77316a4ca0031e717e45ce527e52615943a52e2bddce53</cites><orcidid>0009-0005-7656-3197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Mingrui</creatorcontrib><creatorcontrib>Yan, Jinqiang</creatorcontrib><creatorcontrib>Wan, Chaoying</creatorcontrib><creatorcontrib>Yang, Guowei</creatorcontrib><creatorcontrib>Yu, Teng</creatorcontrib><title>A bi‐stream transformer for single‐image dehazing</title><title>ETRI journal</title><description>Deep‐learning methods, such as encoder–decoder networks, have achieved impressive results in image dehazing. However, these methods often rely only on synthesized data for training that limits their generalizability to hazy, real‐world images. To leverage prior knowledge of haze properties, we propose a bi‐encoder structure that integrates a prior‐based encoder into a traditional encoder–decoder network. The features from both encoders were fused using a feature enhancement module. We adopted transformer blocks instead of convolutions to model local feature associations. Experimental results demonstrate that our method surpasses state‐of‐the‐art methods for synthesized and actual hazy scenes. Therefore, we believe that our method will be a useful supplement to the collection of current artificial intelligence models and will benefit engineering applications in computer vision.</description><issn>1225-6463</issn><issn>2233-7326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotj01OwzAUhC1EJULLmq0v4NZ-tuNkWVX8VKrEBtbWi_NSUjUtsrOBFUfgjJwEB1iMRpqRRvMxdqvk0oCqVjTG_rAECUZIqd0FKwC0Fk5DeckKBWBFaUp9xa5TOkgJ0tiqYHbNm_778yuNkXDgY8RT6s5xoMiz8dSf9kfKfT_gnnhLr_iRowWbdXhMdPPvc_Zyf_e8eRS7p4ftZr0TQYEdRYeNqRzYqkYIVd1Kh85pVaIJmD8qcsqRsYEsuKxS2dpotEDQtG1O9Zyt_nZDPKcUqfNvMT-J715JP1H7X2o_UfuJWv8Ai9lNFQ</recordid><startdate>20241122</startdate><enddate>20241122</enddate><creator>Wang, Mingrui</creator><creator>Yan, Jinqiang</creator><creator>Wan, Chaoying</creator><creator>Yang, Guowei</creator><creator>Yu, Teng</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-7656-3197</orcidid></search><sort><creationdate>20241122</creationdate><title>A bi‐stream transformer for single‐image dehazing</title><author>Wang, Mingrui ; Yan, Jinqiang ; Wan, Chaoying ; Yang, Guowei ; Yu, Teng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c125t-fab4872589a2c89d07a77316a4ca0031e717e45ce527e52615943a52e2bddce53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mingrui</creatorcontrib><creatorcontrib>Yan, Jinqiang</creatorcontrib><creatorcontrib>Wan, Chaoying</creatorcontrib><creatorcontrib>Yang, Guowei</creatorcontrib><creatorcontrib>Yu, Teng</creatorcontrib><collection>CrossRef</collection><jtitle>ETRI journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mingrui</au><au>Yan, Jinqiang</au><au>Wan, Chaoying</au><au>Yang, Guowei</au><au>Yu, Teng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bi‐stream transformer for single‐image dehazing</atitle><jtitle>ETRI journal</jtitle><date>2024-11-22</date><risdate>2024</risdate><issn>1225-6463</issn><eissn>2233-7326</eissn><abstract>Deep‐learning methods, such as encoder–decoder networks, have achieved impressive results in image dehazing. However, these methods often rely only on synthesized data for training that limits their generalizability to hazy, real‐world images. To leverage prior knowledge of haze properties, we propose a bi‐encoder structure that integrates a prior‐based encoder into a traditional encoder–decoder network. The features from both encoders were fused using a feature enhancement module. We adopted transformer blocks instead of convolutions to model local feature associations. Experimental results demonstrate that our method surpasses state‐of‐the‐art methods for synthesized and actual hazy scenes. Therefore, we believe that our method will be a useful supplement to the collection of current artificial intelligence models and will benefit engineering applications in computer vision.</abstract><doi>10.4218/etrij.2024-0037</doi><orcidid>https://orcid.org/0009-0005-7656-3197</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1225-6463
ispartof ETRI journal, 2024-11
issn 1225-6463
2233-7326
language eng
recordid cdi_crossref_primary_10_4218_etrij_2024_0037
source DOAJ Directory of Open Access Journals; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
title A bi‐stream transformer for single‐image dehazing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bi%E2%80%90stream%20transformer%20for%20single%E2%80%90image%20dehazing&rft.jtitle=ETRI%20journal&rft.au=Wang,%20Mingrui&rft.date=2024-11-22&rft.issn=1225-6463&rft.eissn=2233-7326&rft_id=info:doi/10.4218/etrij.2024-0037&rft_dat=%3Ccrossref%3E10_4218_etrij_2024_0037%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true