Generic extensions of ergodic systems

The paper is devoted to problems concerning the generic properties of extensions of dynamical systems with invariant measures. It is proved that generic extensions preserve the singularity of the spectrum, the mixing property and some other asymptotic properties. It is discovered that the preservati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2023, Vol.214 (10), p.1442-1457
1. Verfasser: Ryzhikov, Valerii Valentinovich
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1457
container_issue 10
container_start_page 1442
container_title Sbornik. Mathematics
container_volume 214
creator Ryzhikov, Valerii Valentinovich
description The paper is devoted to problems concerning the generic properties of extensions of dynamical systems with invariant measures. It is proved that generic extensions preserve the singularity of the spectrum, the mixing property and some other asymptotic properties. It is discovered that the preservation of algebraic properties generally depends on statistical properties of the base. It is established that the $P$-entropy of a generic extension is infinite. This fact yields a new proof of the result due to Weiss, Glasner, Austin and Thouvenot on the nondominance of deterministic actions. Generic measurable families of automorphisms of a probability space are considered. It is shown that the asymptotic behaviour of representatives of a generic family is characterized by a combination of dynamic conformism and dynamic individualism. Bibliography: 15 titles.
doi_str_mv 10.4213/sm9844e
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4213_sm9844e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4213_sm9844e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-c736b73777dc0239626218c11f720e4c39511887bf4e16c7dd72f89cb1a0d2723</originalsourceid><addsrcrecordid>eNotj0FLxDAQhYMouK7iX-hFPFVnJmmSHmXRVVjYy3oubTKRim0l04P77624p_d4h-_xKXWL8GAI9aMMtTeGz9QKjfWl8UDnSwdrysqivVRXIp8AUBH6lbrb8si5DwX_zDxKP41STKng_DHFZZWjzDzItbpI7ZfwzSnX6v3l-bB5LXf77dvmaVcGIpjL4LTtnHbOxQCka0t2OQmIyRGwCbquEL13XTKMNrgYHSVfhw5biORIr9X9PzfkSSRzar5zP7T52CA0f3bNyU7_Aq5eQJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generic extensions of ergodic systems</title><source>Alma/SFX Local Collection</source><creator>Ryzhikov, Valerii Valentinovich</creator><creatorcontrib>Ryzhikov, Valerii Valentinovich</creatorcontrib><description>The paper is devoted to problems concerning the generic properties of extensions of dynamical systems with invariant measures. It is proved that generic extensions preserve the singularity of the spectrum, the mixing property and some other asymptotic properties. It is discovered that the preservation of algebraic properties generally depends on statistical properties of the base. It is established that the $P$-entropy of a generic extension is infinite. This fact yields a new proof of the result due to Weiss, Glasner, Austin and Thouvenot on the nondominance of deterministic actions. Generic measurable families of automorphisms of a probability space are considered. It is shown that the asymptotic behaviour of representatives of a generic family is characterized by a combination of dynamic conformism and dynamic individualism. Bibliography: 15 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.4213/sm9844e</identifier><language>eng</language><ispartof>Sbornik. Mathematics, 2023, Vol.214 (10), p.1442-1457</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-c736b73777dc0239626218c11f720e4c39511887bf4e16c7dd72f89cb1a0d2723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Ryzhikov, Valerii Valentinovich</creatorcontrib><title>Generic extensions of ergodic systems</title><title>Sbornik. Mathematics</title><description>The paper is devoted to problems concerning the generic properties of extensions of dynamical systems with invariant measures. It is proved that generic extensions preserve the singularity of the spectrum, the mixing property and some other asymptotic properties. It is discovered that the preservation of algebraic properties generally depends on statistical properties of the base. It is established that the $P$-entropy of a generic extension is infinite. This fact yields a new proof of the result due to Weiss, Glasner, Austin and Thouvenot on the nondominance of deterministic actions. Generic measurable families of automorphisms of a probability space are considered. It is shown that the asymptotic behaviour of representatives of a generic family is characterized by a combination of dynamic conformism and dynamic individualism. Bibliography: 15 titles.</description><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotj0FLxDAQhYMouK7iX-hFPFVnJmmSHmXRVVjYy3oubTKRim0l04P77624p_d4h-_xKXWL8GAI9aMMtTeGz9QKjfWl8UDnSwdrysqivVRXIp8AUBH6lbrb8si5DwX_zDxKP41STKng_DHFZZWjzDzItbpI7ZfwzSnX6v3l-bB5LXf77dvmaVcGIpjL4LTtnHbOxQCka0t2OQmIyRGwCbquEL13XTKMNrgYHSVfhw5biORIr9X9PzfkSSRzar5zP7T52CA0f3bNyU7_Aq5eQJg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ryzhikov, Valerii Valentinovich</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Generic extensions of ergodic systems</title><author>Ryzhikov, Valerii Valentinovich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-c736b73777dc0239626218c11f720e4c39511887bf4e16c7dd72f89cb1a0d2723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryzhikov, Valerii Valentinovich</creatorcontrib><collection>CrossRef</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryzhikov, Valerii Valentinovich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generic extensions of ergodic systems</atitle><jtitle>Sbornik. Mathematics</jtitle><date>2023</date><risdate>2023</risdate><volume>214</volume><issue>10</issue><spage>1442</spage><epage>1457</epage><pages>1442-1457</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>The paper is devoted to problems concerning the generic properties of extensions of dynamical systems with invariant measures. It is proved that generic extensions preserve the singularity of the spectrum, the mixing property and some other asymptotic properties. It is discovered that the preservation of algebraic properties generally depends on statistical properties of the base. It is established that the $P$-entropy of a generic extension is infinite. This fact yields a new proof of the result due to Weiss, Glasner, Austin and Thouvenot on the nondominance of deterministic actions. Generic measurable families of automorphisms of a probability space are considered. It is shown that the asymptotic behaviour of representatives of a generic family is characterized by a combination of dynamic conformism and dynamic individualism. Bibliography: 15 titles.</abstract><doi>10.4213/sm9844e</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2023, Vol.214 (10), p.1442-1457
issn 1064-5616
1468-4802
language eng
recordid cdi_crossref_primary_10_4213_sm9844e
source Alma/SFX Local Collection
title Generic extensions of ergodic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generic%20extensions%20of%20ergodic%20systems&rft.jtitle=Sbornik.%20Mathematics&rft.au=Ryzhikov,%20Valerii%20Valentinovich&rft.date=2023&rft.volume=214&rft.issue=10&rft.spage=1442&rft.epage=1457&rft.pages=1442-1457&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.4213/sm9844e&rft_dat=%3Ccrossref%3E10_4213_sm9844e%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true