A metric description of flexible octahedra

A new description of flexible Bricard octahedra is obtained using conditions in terms of edge lengths. It is suitable for the study of a number of problems in the metric geometry of octahedra and, in particular, for searching for a proof of the conjecture of Sabitov on the vanishing of all but the l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2023, Vol.214 (7), p.952-981
1. Verfasser: Mikhalev, Sergei Nikolaevich
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 981
container_issue 7
container_start_page 952
container_title Sbornik. Mathematics
container_volume 214
creator Mikhalev, Sergei Nikolaevich
description A new description of flexible Bricard octahedra is obtained using conditions in terms of edge lengths. It is suitable for the study of a number of problems in the metric geometry of octahedra and, in particular, for searching for a proof of the conjecture of Sabitov on the vanishing of all but the leading coefficients of the polynomial for the volume of a type $3$ octahedron. Bibliography: 17 titles.
doi_str_mv 10.4213/sm9635e
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4213_sm9635e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4213_sm9635e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-eea6e2c4a8b36e35df7e03f1402a2ddd1521874a2d46ae1a016b9fcda9f7861c3</originalsourceid><addsrcrecordid>eNotj8FKAzEURYMoWKv4C9kJQvS9JPNmZlmKVqHQTV0PmeQFIzNOSWahf2-LXd2zuocjxD3Ck9VonsvYkqn4QizQUqNsA_ryyEBWVYR0LW5K-QKASmOzEI8rOfKck5eBi8_pMKfpW05RxoF_Uj-wnPzsPjlkdyuuohsK3513KT5eX_brN7Xdbd7Xq63yWsOsmB2x9tY1vSE2VYg1g4loQTsdQsCTuLZHtuQYHSD1bfTBtbFuCL1Ziof_X5-nUjLH7pDT6PJvh9CdErtzovkDi0ZDrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A metric description of flexible octahedra</title><source>Alma/SFX Local Collection</source><creator>Mikhalev, Sergei Nikolaevich</creator><creatorcontrib>Mikhalev, Sergei Nikolaevich</creatorcontrib><description>A new description of flexible Bricard octahedra is obtained using conditions in terms of edge lengths. It is suitable for the study of a number of problems in the metric geometry of octahedra and, in particular, for searching for a proof of the conjecture of Sabitov on the vanishing of all but the leading coefficients of the polynomial for the volume of a type $3$ octahedron. Bibliography: 17 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.4213/sm9635e</identifier><language>eng</language><ispartof>Sbornik. Mathematics, 2023, Vol.214 (7), p.952-981</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-eea6e2c4a8b36e35df7e03f1402a2ddd1521874a2d46ae1a016b9fcda9f7861c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Mikhalev, Sergei Nikolaevich</creatorcontrib><title>A metric description of flexible octahedra</title><title>Sbornik. Mathematics</title><description>A new description of flexible Bricard octahedra is obtained using conditions in terms of edge lengths. It is suitable for the study of a number of problems in the metric geometry of octahedra and, in particular, for searching for a proof of the conjecture of Sabitov on the vanishing of all but the leading coefficients of the polynomial for the volume of a type $3$ octahedron. Bibliography: 17 titles.</description><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotj8FKAzEURYMoWKv4C9kJQvS9JPNmZlmKVqHQTV0PmeQFIzNOSWahf2-LXd2zuocjxD3Ck9VonsvYkqn4QizQUqNsA_ryyEBWVYR0LW5K-QKASmOzEI8rOfKck5eBi8_pMKfpW05RxoF_Uj-wnPzsPjlkdyuuohsK3513KT5eX_brN7Xdbd7Xq63yWsOsmB2x9tY1vSE2VYg1g4loQTsdQsCTuLZHtuQYHSD1bfTBtbFuCL1Ziof_X5-nUjLH7pDT6PJvh9CdErtzovkDi0ZDrA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Mikhalev, Sergei Nikolaevich</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>A metric description of flexible octahedra</title><author>Mikhalev, Sergei Nikolaevich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-eea6e2c4a8b36e35df7e03f1402a2ddd1521874a2d46ae1a016b9fcda9f7861c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhalev, Sergei Nikolaevich</creatorcontrib><collection>CrossRef</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhalev, Sergei Nikolaevich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A metric description of flexible octahedra</atitle><jtitle>Sbornik. Mathematics</jtitle><date>2023</date><risdate>2023</risdate><volume>214</volume><issue>7</issue><spage>952</spage><epage>981</epage><pages>952-981</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>A new description of flexible Bricard octahedra is obtained using conditions in terms of edge lengths. It is suitable for the study of a number of problems in the metric geometry of octahedra and, in particular, for searching for a proof of the conjecture of Sabitov on the vanishing of all but the leading coefficients of the polynomial for the volume of a type $3$ octahedron. Bibliography: 17 titles.</abstract><doi>10.4213/sm9635e</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2023, Vol.214 (7), p.952-981
issn 1064-5616
1468-4802
language eng
recordid cdi_crossref_primary_10_4213_sm9635e
source Alma/SFX Local Collection
title A metric description of flexible octahedra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20metric%20description%20of%20flexible%20octahedra&rft.jtitle=Sbornik.%20Mathematics&rft.au=Mikhalev,%20Sergei%20Nikolaevich&rft.date=2023&rft.volume=214&rft.issue=7&rft.spage=952&rft.epage=981&rft.pages=952-981&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.4213/sm9635e&rft_dat=%3Ccrossref%3E10_4213_sm9635e%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true