О спектре оператора Лапласа на замкнутых поверхностях

В статье дан обзор классических и сравнительно недавних результатов о распределении собственных значений оператора Лапласа на замкнутых поверхностях. Для различных классов метрик рассмотрена зависимость поведения второго члена в формуле Вейля от геометрии геодезического потока. Приведены различные в...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Uspehi matematičeskih nauk 2022, Vol.77 (1(463)), p.91-108
1. Verfasser: Popov, Dmitrii Aleksandrovich
Format: Artikel
Sprache:rus
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:В статье дан обзор классических и сравнительно недавних результатов о распределении собственных значений оператора Лапласа на замкнутых поверхностях. Для различных классов метрик рассмотрена зависимость поведения второго члена в формуле Вейля от геометрии геодезического потока. Приведены различные варианты формул следа и вытекающие из них тождества для спектра. Отдельно, с помощью формулы Сельберга, рассмотрен случай компактной римановой поверхности с метрикой Пуанкаре. Приведен ряд результатов о статистических свойствах спектра в их связи с теорией квантового хаоса и гипотезой универсальности. Библиография: 51 название. A survey is given of classical and relatively recent results on the distribution of the eigenvalues of the Laplace operator on closed surfaces. For various classes of metrics the dependence of the behaviour of the second term in Weyl's formula on the geometry of the geodesic flow is considered. Various versions of trace formulae are presented, along with ensuing identities for the spectrum. The case of a compact Riemann surface with the Poincaré metric is considered separately, with the use of Selberg's formula. A number of results on the stochastic properties of the spectrum in connection with the theory of quantum chaos and the universality conjecture are presented. Bibliography: 51 titles.
ISSN:0042-1316
2305-2872
DOI:10.4213/rm9916