NEW TRIGONOMETRIC BASIS POSSESSING EXPONENTIAL SHAPE PARAMETERS
Four new trigonometric Bernstein-like basis functions with two exponential shape pa- rameters are constructed, based on which a class of trigonometric Bézier-like curves, anal- ogous to the cubic Bézier curves, is proposed. The corner cutting algorithm for computing the trigonometric Bézier-like cur...
Gespeichert in:
Veröffentlicht in: | Journal of computational mathematics 2015-11, Vol.33 (6), p.642-684 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 684 |
---|---|
container_issue | 6 |
container_start_page | 642 |
container_title | Journal of computational mathematics |
container_volume | 33 |
creator | Zhu, Yuanpeng Han, Xuli |
description | Four new trigonometric Bernstein-like basis functions with two exponential shape pa- rameters are constructed, based on which a class of trigonometric Bézier-like curves, anal- ogous to the cubic Bézier curves, is proposed. The corner cutting algorithm for computing the trigonometric Bézier-like curves is given. Any arc of an eliipse or a parabola can be represented exactly by using the trigonometric Bézier-like curves. The corresponding trigonometric Bernstein-like operator is presented and the spectral analysis shows that the trigonometric Bézier-like curves are closer to the given control polygon than the cu- bic Bézier curves. Based on the new proposed trigonometric Bernstein-like basis, a new class of trigonometric B-spline-like basis functions with two local exponential shape pa- rameters is constructed. The totally positive property of the trigonometric B-spline-like basis is proved. For different values of the shape parameters, the associated trigonometric B-spline-like curves can be C2 N FC3 continuous for a non-uniform knot vector, and C3 or C5 continuous for a uniform knot vector. A new class of trigonometric Bézier-like basis functions over triangular domain is also constructed. A de Casteljau-type algorithm for computing the associated trigonometric Bézier-like patch is developed. The conditions for G1 continuous joining two trigonometric Bézier-like patches over triangular domain arededuced. |
doi_str_mv | 10.4208/jcm.1509-m4414 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4208_jcm_1509_m4414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>666910097</cqvip_id><jstor_id>43693884</jstor_id><sourcerecordid>43693884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-e98fbc01c49c3c62633cafb26b4fd93ea11199d060b8b3d5ad7055823fb8380d3</originalsourceid><addsrcrecordid>eNpNj8FPwjAUxhujiYhePS8mHjdf-7quPZlJKizBbaEYvTVbtyFEQDYu_vcOIcbT-w6_78v7EXJLIeAM5MPKrQMagvLXnFN-RgZUKepHFNU5GQALua84qEty1XUrAEDGowF5TPWbN58l4yzNXnQfRt5TbBLj5Zkx2pgkHXv6Pc9Snc6TeOqZSZxrL49ncU_rmbkmF03x2dU3pzskr896Ppr402ycjOKp71CwvV8r2ZQOqOPKoRNMILqiKZkoeVMprAtK-28rEFDKEquwqCIIQ8mwKSVKqHBIguOua7dd19aN_WqX66L9thTsQd_2-vagb3_1-8L9sbDq9tv2P80QIstRKJTywN2dhj-2m8VuuVn8sUIIRQFUhD9Vm1-N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NEW TRIGONOMETRIC BASIS POSSESSING EXPONENTIAL SHAPE PARAMETERS</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR</source><creator>Zhu, Yuanpeng ; Han, Xuli</creator><creatorcontrib>Zhu, Yuanpeng ; Han, Xuli</creatorcontrib><description>Four new trigonometric Bernstein-like basis functions with two exponential shape pa- rameters are constructed, based on which a class of trigonometric Bézier-like curves, anal- ogous to the cubic Bézier curves, is proposed. The corner cutting algorithm for computing the trigonometric Bézier-like curves is given. Any arc of an eliipse or a parabola can be represented exactly by using the trigonometric Bézier-like curves. The corresponding trigonometric Bernstein-like operator is presented and the spectral analysis shows that the trigonometric Bézier-like curves are closer to the given control polygon than the cu- bic Bézier curves. Based on the new proposed trigonometric Bernstein-like basis, a new class of trigonometric B-spline-like basis functions with two local exponential shape pa- rameters is constructed. The totally positive property of the trigonometric B-spline-like basis is proved. For different values of the shape parameters, the associated trigonometric B-spline-like curves can be C2 N FC3 continuous for a non-uniform knot vector, and C3 or C5 continuous for a uniform knot vector. A new class of trigonometric Bézier-like basis functions over triangular domain is also constructed. A de Casteljau-type algorithm for computing the associated trigonometric Bézier-like patch is developed. The conditions for G1 continuous joining two trigonometric Bézier-like patches over triangular domain arededuced.</description><identifier>ISSN: 0254-9409</identifier><identifier>EISSN: 1991-7139</identifier><identifier>DOI: 10.4208/jcm.1509-m4414</identifier><language>eng</language><publisher>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</publisher><ispartof>Journal of computational mathematics, 2015-11, Vol.33 (6), p.642-684</ispartof><rights>Copyright 2015 AMSS, Chinese Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-e98fbc01c49c3c62633cafb26b4fd93ea11199d060b8b3d5ad7055823fb8380d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85761X/85761X.jpg</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43693884$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43693884$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,27929,27930,58022,58026,58255,58259</link.rule.ids></links><search><creatorcontrib>Zhu, Yuanpeng</creatorcontrib><creatorcontrib>Han, Xuli</creatorcontrib><title>NEW TRIGONOMETRIC BASIS POSSESSING EXPONENTIAL SHAPE PARAMETERS</title><title>Journal of computational mathematics</title><addtitle>Journal of Computational Mathematics</addtitle><description>Four new trigonometric Bernstein-like basis functions with two exponential shape pa- rameters are constructed, based on which a class of trigonometric Bézier-like curves, anal- ogous to the cubic Bézier curves, is proposed. The corner cutting algorithm for computing the trigonometric Bézier-like curves is given. Any arc of an eliipse or a parabola can be represented exactly by using the trigonometric Bézier-like curves. The corresponding trigonometric Bernstein-like operator is presented and the spectral analysis shows that the trigonometric Bézier-like curves are closer to the given control polygon than the cu- bic Bézier curves. Based on the new proposed trigonometric Bernstein-like basis, a new class of trigonometric B-spline-like basis functions with two local exponential shape pa- rameters is constructed. The totally positive property of the trigonometric B-spline-like basis is proved. For different values of the shape parameters, the associated trigonometric B-spline-like curves can be C2 N FC3 continuous for a non-uniform knot vector, and C3 or C5 continuous for a uniform knot vector. A new class of trigonometric Bézier-like basis functions over triangular domain is also constructed. A de Casteljau-type algorithm for computing the associated trigonometric Bézier-like patch is developed. The conditions for G1 continuous joining two trigonometric Bézier-like patches over triangular domain arededuced.</description><issn>0254-9409</issn><issn>1991-7139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNj8FPwjAUxhujiYhePS8mHjdf-7quPZlJKizBbaEYvTVbtyFEQDYu_vcOIcbT-w6_78v7EXJLIeAM5MPKrQMagvLXnFN-RgZUKepHFNU5GQALua84qEty1XUrAEDGowF5TPWbN58l4yzNXnQfRt5TbBLj5Zkx2pgkHXv6Pc9Snc6TeOqZSZxrL49ncU_rmbkmF03x2dU3pzskr896Ppr402ycjOKp71CwvV8r2ZQOqOPKoRNMILqiKZkoeVMprAtK-28rEFDKEquwqCIIQ8mwKSVKqHBIguOua7dd19aN_WqX66L9thTsQd_2-vagb3_1-8L9sbDq9tv2P80QIstRKJTywN2dhj-2m8VuuVn8sUIIRQFUhD9Vm1-N</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Zhu, Yuanpeng</creator><creator>Han, Xuli</creator><general>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>NEW TRIGONOMETRIC BASIS POSSESSING EXPONENTIAL SHAPE PARAMETERS</title><author>Zhu, Yuanpeng ; Han, Xuli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-e98fbc01c49c3c62633cafb26b4fd93ea11199d060b8b3d5ad7055823fb8380d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yuanpeng</creatorcontrib><creatorcontrib>Han, Xuli</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Journal of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yuanpeng</au><au>Han, Xuli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NEW TRIGONOMETRIC BASIS POSSESSING EXPONENTIAL SHAPE PARAMETERS</atitle><jtitle>Journal of computational mathematics</jtitle><addtitle>Journal of Computational Mathematics</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>33</volume><issue>6</issue><spage>642</spage><epage>684</epage><pages>642-684</pages><issn>0254-9409</issn><eissn>1991-7139</eissn><abstract>Four new trigonometric Bernstein-like basis functions with two exponential shape pa- rameters are constructed, based on which a class of trigonometric Bézier-like curves, anal- ogous to the cubic Bézier curves, is proposed. The corner cutting algorithm for computing the trigonometric Bézier-like curves is given. Any arc of an eliipse or a parabola can be represented exactly by using the trigonometric Bézier-like curves. The corresponding trigonometric Bernstein-like operator is presented and the spectral analysis shows that the trigonometric Bézier-like curves are closer to the given control polygon than the cu- bic Bézier curves. Based on the new proposed trigonometric Bernstein-like basis, a new class of trigonometric B-spline-like basis functions with two local exponential shape pa- rameters is constructed. The totally positive property of the trigonometric B-spline-like basis is proved. For different values of the shape parameters, the associated trigonometric B-spline-like curves can be C2 N FC3 continuous for a non-uniform knot vector, and C3 or C5 continuous for a uniform knot vector. A new class of trigonometric Bézier-like basis functions over triangular domain is also constructed. A de Casteljau-type algorithm for computing the associated trigonometric Bézier-like patch is developed. The conditions for G1 continuous joining two trigonometric Bézier-like patches over triangular domain arededuced.</abstract><pub>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</pub><doi>10.4208/jcm.1509-m4414</doi><tpages>43</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-9409 |
ispartof | Journal of computational mathematics, 2015-11, Vol.33 (6), p.642-684 |
issn | 0254-9409 1991-7139 |
language | eng |
recordid | cdi_crossref_primary_10_4208_jcm_1509_m4414 |
source | JSTOR Mathematics & Statistics; JSTOR |
title | NEW TRIGONOMETRIC BASIS POSSESSING EXPONENTIAL SHAPE PARAMETERS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T03%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NEW%20TRIGONOMETRIC%20BASIS%20POSSESSING%20EXPONENTIAL%20SHAPE%20PARAMETERS&rft.jtitle=Journal%20of%20computational%20mathematics&rft.au=Zhu,%20Yuanpeng&rft.date=2015-11-01&rft.volume=33&rft.issue=6&rft.spage=642&rft.epage=684&rft.pages=642-684&rft.issn=0254-9409&rft.eissn=1991-7139&rft_id=info:doi/10.4208/jcm.1509-m4414&rft_dat=%3Cjstor_cross%3E43693884%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=666910097&rft_jstor_id=43693884&rfr_iscdi=true |