NUMERICAL RECONSTRUCTION OF SMALL PERTURBATIONS IN THE ELECTROMAGNETIC COEFFICIENTS OF A DIELECTRIC MATERIAL

The aim of this paper is to solve numerically the inverse problem of reconstructing small amplitude perturbations in the magnetic permeability of a dielectric material from partial or total dynamic boundary measurements. Our numerical algorithm is based on the resolution of the time-dependent Maxwel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational mathematics 2014, Vol.32 (1), p.21-38
Hauptverfasser: Darbas, Marion, Lohrengel, Stephanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1
container_start_page 21
container_title Journal of computational mathematics
container_volume 32
creator Darbas, Marion
Lohrengel, Stephanie
description The aim of this paper is to solve numerically the inverse problem of reconstructing small amplitude perturbations in the magnetic permeability of a dielectric material from partial or total dynamic boundary measurements. Our numerical algorithm is based on the resolution of the time-dependent Maxwell equations, an exact controllability method and Fourier inversion for localizing the perturbations. Two-dimensional numerical experiments illustrate the performance of the reconstruction method for different configurations even in the case of limited-view data.
doi_str_mv 10.4208/jcm.1309-m4378
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_crossref_primary_10_4208_jcm_1309_m4378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48941751</cqvip_id><jstor_id>43694039</jstor_id><sourcerecordid>43694039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d516cbf8d4af131886c90002e05506f8397c1eb61ffe703e64fbfc22b90aadab3</originalsourceid><addsrcrecordid>eNpFkN1PgzAUxRujiXP66ptJffSB2dIC7SNi2Uj4MFCeG2B0H9mGwmLif29xy3y6yb2_c-7JAeARoxm1EXvdNvsZJohbe0o8dgUmmHNseZjwazBBtkMtThG_BXfDsEUIEZt6E7BLy0TkUeDHMBdBlhYyLwMZZSnMQlgkfhzDD5HLMn_zx20BoxTKhYAiFoHMs8Sfp0JGAQwyEYZREIlUFqPUh-_RiTHHxJfmhx_fgxtd7Yb24TynoAyFDBZWnM3HCFZDXHy0lg52m1qzJa00Jpgxt-EmsN0ix0GuZoR7DW5rF2vdeoi0LtW1bmy75qiqllVNpuDl5Luuduqz3-yr_kd11UYt_FiNO2RMmfn1jQ07O7FN3w1D3-qLACM19qpMr2rsVf31agRPJ8F2OHb9habENfUSbu7PZ8N1d1h9bQ6rf4Zxij0Hk19plXdx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NUMERICAL RECONSTRUCTION OF SMALL PERTURBATIONS IN THE ELECTROMAGNETIC COEFFICIENTS OF A DIELECTRIC MATERIAL</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Darbas, Marion ; Lohrengel, Stephanie</creator><creatorcontrib>Darbas, Marion ; Lohrengel, Stephanie</creatorcontrib><description>The aim of this paper is to solve numerically the inverse problem of reconstructing small amplitude perturbations in the magnetic permeability of a dielectric material from partial or total dynamic boundary measurements. Our numerical algorithm is based on the resolution of the time-dependent Maxwell equations, an exact controllability method and Fourier inversion for localizing the perturbations. Two-dimensional numerical experiments illustrate the performance of the reconstruction method for different configurations even in the case of limited-view data.</description><identifier>ISSN: 0254-9409</identifier><identifier>ISSN: 2426-8399</identifier><identifier>EISSN: 1991-7139</identifier><identifier>EISSN: 2426-8399</identifier><identifier>DOI: 10.4208/jcm.1309-m4378</identifier><language>eng</language><publisher>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</publisher><subject>Approximation ; Coefficients ; Dielectric materials ; Electromagnetism ; Fourier transformations ; Inverse problems ; Magnetic permeability ; Mathematics ; Maxwell equations ; Numerical Analysis ; Rectangles ; Vector curl ; 介电材料 ; 动态边界 ; 小扰动 ; 振幅扰动 ; 数值算法 ; 电介质材料 ; 磁系 ; 麦克斯韦方程组</subject><ispartof>Journal of computational mathematics, 2014, Vol.32 (1), p.21-38</ispartof><rights>Copyright 2014 AMSS, Chinese Academy of Sciences</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-d516cbf8d4af131886c90002e05506f8397c1eb61ffe703e64fbfc22b90aadab3</citedby><orcidid>0000-0002-1619-6293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85761X/85761X.jpg</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43694039$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43694039$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,885,4024,27923,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01888361$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Darbas, Marion</creatorcontrib><creatorcontrib>Lohrengel, Stephanie</creatorcontrib><title>NUMERICAL RECONSTRUCTION OF SMALL PERTURBATIONS IN THE ELECTROMAGNETIC COEFFICIENTS OF A DIELECTRIC MATERIAL</title><title>Journal of computational mathematics</title><addtitle>Journal of Computational Mathematics</addtitle><description>The aim of this paper is to solve numerically the inverse problem of reconstructing small amplitude perturbations in the magnetic permeability of a dielectric material from partial or total dynamic boundary measurements. Our numerical algorithm is based on the resolution of the time-dependent Maxwell equations, an exact controllability method and Fourier inversion for localizing the perturbations. Two-dimensional numerical experiments illustrate the performance of the reconstruction method for different configurations even in the case of limited-view data.</description><subject>Approximation</subject><subject>Coefficients</subject><subject>Dielectric materials</subject><subject>Electromagnetism</subject><subject>Fourier transformations</subject><subject>Inverse problems</subject><subject>Magnetic permeability</subject><subject>Mathematics</subject><subject>Maxwell equations</subject><subject>Numerical Analysis</subject><subject>Rectangles</subject><subject>Vector curl</subject><subject>介电材料</subject><subject>动态边界</subject><subject>小扰动</subject><subject>振幅扰动</subject><subject>数值算法</subject><subject>电介质材料</subject><subject>磁系</subject><subject>麦克斯韦方程组</subject><issn>0254-9409</issn><issn>2426-8399</issn><issn>1991-7139</issn><issn>2426-8399</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkN1PgzAUxRujiXP66ptJffSB2dIC7SNi2Uj4MFCeG2B0H9mGwmLif29xy3y6yb2_c-7JAeARoxm1EXvdNvsZJohbe0o8dgUmmHNseZjwazBBtkMtThG_BXfDsEUIEZt6E7BLy0TkUeDHMBdBlhYyLwMZZSnMQlgkfhzDD5HLMn_zx20BoxTKhYAiFoHMs8Sfp0JGAQwyEYZREIlUFqPUh-_RiTHHxJfmhx_fgxtd7Yb24TynoAyFDBZWnM3HCFZDXHy0lg52m1qzJa00Jpgxt-EmsN0ix0GuZoR7DW5rF2vdeoi0LtW1bmy75qiqllVNpuDl5Luuduqz3-yr_kd11UYt_FiNO2RMmfn1jQ07O7FN3w1D3-qLACM19qpMr2rsVf31agRPJ8F2OHb9habENfUSbu7PZ8N1d1h9bQ6rf4Zxij0Hk19plXdx</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Darbas, Marion</creator><creator>Lohrengel, Stephanie</creator><general>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</general><general>Société de Mathématiques Appliquées et Industrielles (SMAI)</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1619-6293</orcidid></search><sort><creationdate>2014</creationdate><title>NUMERICAL RECONSTRUCTION OF SMALL PERTURBATIONS IN THE ELECTROMAGNETIC COEFFICIENTS OF A DIELECTRIC MATERIAL</title><author>Darbas, Marion ; Lohrengel, Stephanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d516cbf8d4af131886c90002e05506f8397c1eb61ffe703e64fbfc22b90aadab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Coefficients</topic><topic>Dielectric materials</topic><topic>Electromagnetism</topic><topic>Fourier transformations</topic><topic>Inverse problems</topic><topic>Magnetic permeability</topic><topic>Mathematics</topic><topic>Maxwell equations</topic><topic>Numerical Analysis</topic><topic>Rectangles</topic><topic>Vector curl</topic><topic>介电材料</topic><topic>动态边界</topic><topic>小扰动</topic><topic>振幅扰动</topic><topic>数值算法</topic><topic>电介质材料</topic><topic>磁系</topic><topic>麦克斯韦方程组</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darbas, Marion</creatorcontrib><creatorcontrib>Lohrengel, Stephanie</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darbas, Marion</au><au>Lohrengel, Stephanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NUMERICAL RECONSTRUCTION OF SMALL PERTURBATIONS IN THE ELECTROMAGNETIC COEFFICIENTS OF A DIELECTRIC MATERIAL</atitle><jtitle>Journal of computational mathematics</jtitle><addtitle>Journal of Computational Mathematics</addtitle><date>2014</date><risdate>2014</risdate><volume>32</volume><issue>1</issue><spage>21</spage><epage>38</epage><pages>21-38</pages><issn>0254-9409</issn><issn>2426-8399</issn><eissn>1991-7139</eissn><eissn>2426-8399</eissn><abstract>The aim of this paper is to solve numerically the inverse problem of reconstructing small amplitude perturbations in the magnetic permeability of a dielectric material from partial or total dynamic boundary measurements. Our numerical algorithm is based on the resolution of the time-dependent Maxwell equations, an exact controllability method and Fourier inversion for localizing the perturbations. Two-dimensional numerical experiments illustrate the performance of the reconstruction method for different configurations even in the case of limited-view data.</abstract><pub>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</pub><doi>10.4208/jcm.1309-m4378</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1619-6293</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0254-9409
ispartof Journal of computational mathematics, 2014, Vol.32 (1), p.21-38
issn 0254-9409
2426-8399
1991-7139
2426-8399
language eng
recordid cdi_crossref_primary_10_4208_jcm_1309_m4378
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Approximation
Coefficients
Dielectric materials
Electromagnetism
Fourier transformations
Inverse problems
Magnetic permeability
Mathematics
Maxwell equations
Numerical Analysis
Rectangles
Vector curl
介电材料
动态边界
小扰动
振幅扰动
数值算法
电介质材料
磁系
麦克斯韦方程组
title NUMERICAL RECONSTRUCTION OF SMALL PERTURBATIONS IN THE ELECTROMAGNETIC COEFFICIENTS OF A DIELECTRIC MATERIAL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NUMERICAL%20RECONSTRUCTION%20OF%20SMALL%20PERTURBATIONS%20IN%20THE%20ELECTROMAGNETIC%20COEFFICIENTS%20OF%20A%20DIELECTRIC%20MATERIAL&rft.jtitle=Journal%20of%20computational%20mathematics&rft.au=Darbas,%20Marion&rft.date=2014&rft.volume=32&rft.issue=1&rft.spage=21&rft.epage=38&rft.pages=21-38&rft.issn=0254-9409&rft.eissn=1991-7139&rft_id=info:doi/10.4208/jcm.1309-m4378&rft_dat=%3Cjstor_hal_p%3E43694039%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=48941751&rft_jstor_id=43694039&rfr_iscdi=true