NUMERICAL RECONSTRUCTION OF SMALL PERTURBATIONS IN THE ELECTROMAGNETIC COEFFICIENTS OF A DIELECTRIC MATERIAL
The aim of this paper is to solve numerically the inverse problem of reconstructing small amplitude perturbations in the magnetic permeability of a dielectric material from partial or total dynamic boundary measurements. Our numerical algorithm is based on the resolution of the time-dependent Maxwel...
Gespeichert in:
Veröffentlicht in: | Journal of computational mathematics 2014, Vol.32 (1), p.21-38 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 1 |
container_start_page | 21 |
container_title | Journal of computational mathematics |
container_volume | 32 |
creator | Darbas, Marion Lohrengel, Stephanie |
description | The aim of this paper is to solve numerically the inverse problem of reconstructing small amplitude perturbations in the magnetic permeability of a dielectric material from partial or total dynamic boundary measurements. Our numerical algorithm is based on the resolution of the time-dependent Maxwell equations, an exact controllability method and Fourier inversion for localizing the perturbations. Two-dimensional numerical experiments illustrate the performance of the reconstruction method for different configurations even in the case of limited-view data. |
doi_str_mv | 10.4208/jcm.1309-m4378 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_crossref_primary_10_4208_jcm_1309_m4378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48941751</cqvip_id><jstor_id>43694039</jstor_id><sourcerecordid>43694039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d516cbf8d4af131886c90002e05506f8397c1eb61ffe703e64fbfc22b90aadab3</originalsourceid><addsrcrecordid>eNpFkN1PgzAUxRujiXP66ptJffSB2dIC7SNi2Uj4MFCeG2B0H9mGwmLif29xy3y6yb2_c-7JAeARoxm1EXvdNvsZJohbe0o8dgUmmHNseZjwazBBtkMtThG_BXfDsEUIEZt6E7BLy0TkUeDHMBdBlhYyLwMZZSnMQlgkfhzDD5HLMn_zx20BoxTKhYAiFoHMs8Sfp0JGAQwyEYZREIlUFqPUh-_RiTHHxJfmhx_fgxtd7Yb24TynoAyFDBZWnM3HCFZDXHy0lg52m1qzJa00Jpgxt-EmsN0ix0GuZoR7DW5rF2vdeoi0LtW1bmy75qiqllVNpuDl5Luuduqz3-yr_kd11UYt_FiNO2RMmfn1jQ07O7FN3w1D3-qLACM19qpMr2rsVf31agRPJ8F2OHb9habENfUSbu7PZ8N1d1h9bQ6rf4Zxij0Hk19plXdx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NUMERICAL RECONSTRUCTION OF SMALL PERTURBATIONS IN THE ELECTROMAGNETIC COEFFICIENTS OF A DIELECTRIC MATERIAL</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Darbas, Marion ; Lohrengel, Stephanie</creator><creatorcontrib>Darbas, Marion ; Lohrengel, Stephanie</creatorcontrib><description>The aim of this paper is to solve numerically the inverse problem of reconstructing small amplitude perturbations in the magnetic permeability of a dielectric material from partial or total dynamic boundary measurements. Our numerical algorithm is based on the resolution of the time-dependent Maxwell equations, an exact controllability method and Fourier inversion for localizing the perturbations. Two-dimensional numerical experiments illustrate the performance of the reconstruction method for different configurations even in the case of limited-view data.</description><identifier>ISSN: 0254-9409</identifier><identifier>ISSN: 2426-8399</identifier><identifier>EISSN: 1991-7139</identifier><identifier>EISSN: 2426-8399</identifier><identifier>DOI: 10.4208/jcm.1309-m4378</identifier><language>eng</language><publisher>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</publisher><subject>Approximation ; Coefficients ; Dielectric materials ; Electromagnetism ; Fourier transformations ; Inverse problems ; Magnetic permeability ; Mathematics ; Maxwell equations ; Numerical Analysis ; Rectangles ; Vector curl ; 介电材料 ; 动态边界 ; 小扰动 ; 振幅扰动 ; 数值算法 ; 电介质材料 ; 磁系 ; 麦克斯韦方程组</subject><ispartof>Journal of computational mathematics, 2014, Vol.32 (1), p.21-38</ispartof><rights>Copyright 2014 AMSS, Chinese Academy of Sciences</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-d516cbf8d4af131886c90002e05506f8397c1eb61ffe703e64fbfc22b90aadab3</citedby><orcidid>0000-0002-1619-6293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85761X/85761X.jpg</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43694039$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43694039$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,885,4024,27923,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01888361$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Darbas, Marion</creatorcontrib><creatorcontrib>Lohrengel, Stephanie</creatorcontrib><title>NUMERICAL RECONSTRUCTION OF SMALL PERTURBATIONS IN THE ELECTROMAGNETIC COEFFICIENTS OF A DIELECTRIC MATERIAL</title><title>Journal of computational mathematics</title><addtitle>Journal of Computational Mathematics</addtitle><description>The aim of this paper is to solve numerically the inverse problem of reconstructing small amplitude perturbations in the magnetic permeability of a dielectric material from partial or total dynamic boundary measurements. Our numerical algorithm is based on the resolution of the time-dependent Maxwell equations, an exact controllability method and Fourier inversion for localizing the perturbations. Two-dimensional numerical experiments illustrate the performance of the reconstruction method for different configurations even in the case of limited-view data.</description><subject>Approximation</subject><subject>Coefficients</subject><subject>Dielectric materials</subject><subject>Electromagnetism</subject><subject>Fourier transformations</subject><subject>Inverse problems</subject><subject>Magnetic permeability</subject><subject>Mathematics</subject><subject>Maxwell equations</subject><subject>Numerical Analysis</subject><subject>Rectangles</subject><subject>Vector curl</subject><subject>介电材料</subject><subject>动态边界</subject><subject>小扰动</subject><subject>振幅扰动</subject><subject>数值算法</subject><subject>电介质材料</subject><subject>磁系</subject><subject>麦克斯韦方程组</subject><issn>0254-9409</issn><issn>2426-8399</issn><issn>1991-7139</issn><issn>2426-8399</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkN1PgzAUxRujiXP66ptJffSB2dIC7SNi2Uj4MFCeG2B0H9mGwmLif29xy3y6yb2_c-7JAeARoxm1EXvdNvsZJohbe0o8dgUmmHNseZjwazBBtkMtThG_BXfDsEUIEZt6E7BLy0TkUeDHMBdBlhYyLwMZZSnMQlgkfhzDD5HLMn_zx20BoxTKhYAiFoHMs8Sfp0JGAQwyEYZREIlUFqPUh-_RiTHHxJfmhx_fgxtd7Yb24TynoAyFDBZWnM3HCFZDXHy0lg52m1qzJa00Jpgxt-EmsN0ix0GuZoR7DW5rF2vdeoi0LtW1bmy75qiqllVNpuDl5Luuduqz3-yr_kd11UYt_FiNO2RMmfn1jQ07O7FN3w1D3-qLACM19qpMr2rsVf31agRPJ8F2OHb9habENfUSbu7PZ8N1d1h9bQ6rf4Zxij0Hk19plXdx</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Darbas, Marion</creator><creator>Lohrengel, Stephanie</creator><general>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</general><general>Société de Mathématiques Appliquées et Industrielles (SMAI)</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1619-6293</orcidid></search><sort><creationdate>2014</creationdate><title>NUMERICAL RECONSTRUCTION OF SMALL PERTURBATIONS IN THE ELECTROMAGNETIC COEFFICIENTS OF A DIELECTRIC MATERIAL</title><author>Darbas, Marion ; Lohrengel, Stephanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d516cbf8d4af131886c90002e05506f8397c1eb61ffe703e64fbfc22b90aadab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Coefficients</topic><topic>Dielectric materials</topic><topic>Electromagnetism</topic><topic>Fourier transformations</topic><topic>Inverse problems</topic><topic>Magnetic permeability</topic><topic>Mathematics</topic><topic>Maxwell equations</topic><topic>Numerical Analysis</topic><topic>Rectangles</topic><topic>Vector curl</topic><topic>介电材料</topic><topic>动态边界</topic><topic>小扰动</topic><topic>振幅扰动</topic><topic>数值算法</topic><topic>电介质材料</topic><topic>磁系</topic><topic>麦克斯韦方程组</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darbas, Marion</creatorcontrib><creatorcontrib>Lohrengel, Stephanie</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darbas, Marion</au><au>Lohrengel, Stephanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NUMERICAL RECONSTRUCTION OF SMALL PERTURBATIONS IN THE ELECTROMAGNETIC COEFFICIENTS OF A DIELECTRIC MATERIAL</atitle><jtitle>Journal of computational mathematics</jtitle><addtitle>Journal of Computational Mathematics</addtitle><date>2014</date><risdate>2014</risdate><volume>32</volume><issue>1</issue><spage>21</spage><epage>38</epage><pages>21-38</pages><issn>0254-9409</issn><issn>2426-8399</issn><eissn>1991-7139</eissn><eissn>2426-8399</eissn><abstract>The aim of this paper is to solve numerically the inverse problem of reconstructing small amplitude perturbations in the magnetic permeability of a dielectric material from partial or total dynamic boundary measurements. Our numerical algorithm is based on the resolution of the time-dependent Maxwell equations, an exact controllability method and Fourier inversion for localizing the perturbations. Two-dimensional numerical experiments illustrate the performance of the reconstruction method for different configurations even in the case of limited-view data.</abstract><pub>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</pub><doi>10.4208/jcm.1309-m4378</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1619-6293</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-9409 |
ispartof | Journal of computational mathematics, 2014, Vol.32 (1), p.21-38 |
issn | 0254-9409 2426-8399 1991-7139 2426-8399 |
language | eng |
recordid | cdi_crossref_primary_10_4208_jcm_1309_m4378 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Approximation Coefficients Dielectric materials Electromagnetism Fourier transformations Inverse problems Magnetic permeability Mathematics Maxwell equations Numerical Analysis Rectangles Vector curl 介电材料 动态边界 小扰动 振幅扰动 数值算法 电介质材料 磁系 麦克斯韦方程组 |
title | NUMERICAL RECONSTRUCTION OF SMALL PERTURBATIONS IN THE ELECTROMAGNETIC COEFFICIENTS OF A DIELECTRIC MATERIAL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NUMERICAL%20RECONSTRUCTION%20OF%20SMALL%20PERTURBATIONS%20IN%20THE%20ELECTROMAGNETIC%20COEFFICIENTS%20OF%20A%20DIELECTRIC%20MATERIAL&rft.jtitle=Journal%20of%20computational%20mathematics&rft.au=Darbas,%20Marion&rft.date=2014&rft.volume=32&rft.issue=1&rft.spage=21&rft.epage=38&rft.pages=21-38&rft.issn=0254-9409&rft.eissn=1991-7139&rft_id=info:doi/10.4208/jcm.1309-m4378&rft_dat=%3Cjstor_hal_p%3E43694039%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=48941751&rft_jstor_id=43694039&rfr_iscdi=true |