An Immersed Interface Method for Axisymmetric Electrohydrodynamic Simulations in Stokes flow

A numerical scheme based on the immersed interface method (IIM) is developed to simulate the dynamics of an axisymmetric viscous drop under an electric field. In this work, the IIM is used to solve both the fluid velocity field and the electric potential field. Detailed numerical studies on the nume...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in computational physics 2015-08, Vol.18 (2), p.429-449
Hauptverfasser: Nganguia, H., Young, Y.-N., Layton, A. T., Hu, W.-F., Lai, M.-C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 449
container_issue 2
container_start_page 429
container_title Communications in computational physics
container_volume 18
creator Nganguia, H.
Young, Y.-N.
Layton, A. T.
Hu, W.-F.
Lai, M.-C.
description A numerical scheme based on the immersed interface method (IIM) is developed to simulate the dynamics of an axisymmetric viscous drop under an electric field. In this work, the IIM is used to solve both the fluid velocity field and the electric potential field. Detailed numerical studies on the numerical scheme show a second-order convergence. Moreover, our numerical scheme is validated by the good agreement with previous analytical models, and numerical results from the boundary integral simulations. Our method can be extended to Navier-Stokes fluid flow with nonlinear inertia effects.
doi_str_mv 10.4208/cicp.171014.270315a
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4208_cicp_171014_270315a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4208_cicp_171014_270315a</cupid><sourcerecordid>10_4208_cicp_171014_270315a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5aed2c291ea3d9d98fa5bb4fcc84b205501bcb93462178ea85485ecddad40d773</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC9P4CYvMDXJJE2yLKVqoeKiuhNCJhebOjMpSYrO2zulXbs6P4f_Oxw-AB4wmlKCxKMJZj_FHCNMp4SjGjN9ASZYSlxxTNDlmAVmFaFodg1uct4hxGTN5QR8znu46jqXsrNw1ReXvDYOvrqyjRb6mOD8N-RhbJQUDFy2zpQUt4NN0Q697sbdJnSHVpcQ-wxDDzclfrsMfRt_7sCV12129-d5Cz6elu-Ll2r99rxazNeVIZKVimlnyRix07WVVgqvWdNQb4ygDUGMIdyYRtZ0RjAXTgtGBXPGWm0pspzXt6A-3TUp5pycV_sUOp0GhZE6ClJHQeokSJ0FjRQ7U7prUrBfTu3iIfXjp_9yf1T1bas</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Immersed Interface Method for Axisymmetric Electrohydrodynamic Simulations in Stokes flow</title><source>Cambridge Journals</source><creator>Nganguia, H. ; Young, Y.-N. ; Layton, A. T. ; Hu, W.-F. ; Lai, M.-C.</creator><creatorcontrib>Nganguia, H. ; Young, Y.-N. ; Layton, A. T. ; Hu, W.-F. ; Lai, M.-C.</creatorcontrib><description>A numerical scheme based on the immersed interface method (IIM) is developed to simulate the dynamics of an axisymmetric viscous drop under an electric field. In this work, the IIM is used to solve both the fluid velocity field and the electric potential field. Detailed numerical studies on the numerical scheme show a second-order convergence. Moreover, our numerical scheme is validated by the good agreement with previous analytical models, and numerical results from the boundary integral simulations. Our method can be extended to Navier-Stokes fluid flow with nonlinear inertia effects.</description><identifier>ISSN: 1815-2406</identifier><identifier>EISSN: 1991-7120</identifier><identifier>DOI: 10.4208/cicp.171014.270315a</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Communications in computational physics, 2015-08, Vol.18 (2), p.429-449</ispartof><rights>Copyright © Global-Science Press 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-5aed2c291ea3d9d98fa5bb4fcc84b205501bcb93462178ea85485ecddad40d773</citedby><cites>FETCH-LOGICAL-c295t-5aed2c291ea3d9d98fa5bb4fcc84b205501bcb93462178ea85485ecddad40d773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1815240615000651/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Nganguia, H.</creatorcontrib><creatorcontrib>Young, Y.-N.</creatorcontrib><creatorcontrib>Layton, A. T.</creatorcontrib><creatorcontrib>Hu, W.-F.</creatorcontrib><creatorcontrib>Lai, M.-C.</creatorcontrib><title>An Immersed Interface Method for Axisymmetric Electrohydrodynamic Simulations in Stokes flow</title><title>Communications in computational physics</title><addtitle>Commun. Comput. Phys</addtitle><description>A numerical scheme based on the immersed interface method (IIM) is developed to simulate the dynamics of an axisymmetric viscous drop under an electric field. In this work, the IIM is used to solve both the fluid velocity field and the electric potential field. Detailed numerical studies on the numerical scheme show a second-order convergence. Moreover, our numerical scheme is validated by the good agreement with previous analytical models, and numerical results from the boundary integral simulations. Our method can be extended to Navier-Stokes fluid flow with nonlinear inertia effects.</description><issn>1815-2406</issn><issn>1991-7120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWC9P4CYvMDXJJE2yLKVqoeKiuhNCJhebOjMpSYrO2zulXbs6P4f_Oxw-AB4wmlKCxKMJZj_FHCNMp4SjGjN9ASZYSlxxTNDlmAVmFaFodg1uct4hxGTN5QR8znu46jqXsrNw1ReXvDYOvrqyjRb6mOD8N-RhbJQUDFy2zpQUt4NN0Q697sbdJnSHVpcQ-wxDDzclfrsMfRt_7sCV12129-d5Cz6elu-Ll2r99rxazNeVIZKVimlnyRix07WVVgqvWdNQb4ygDUGMIdyYRtZ0RjAXTgtGBXPGWm0pspzXt6A-3TUp5pycV_sUOp0GhZE6ClJHQeokSJ0FjRQ7U7prUrBfTu3iIfXjp_9yf1T1bas</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Nganguia, H.</creator><creator>Young, Y.-N.</creator><creator>Layton, A. T.</creator><creator>Hu, W.-F.</creator><creator>Lai, M.-C.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150801</creationdate><title>An Immersed Interface Method for Axisymmetric Electrohydrodynamic Simulations in Stokes flow</title><author>Nganguia, H. ; Young, Y.-N. ; Layton, A. T. ; Hu, W.-F. ; Lai, M.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5aed2c291ea3d9d98fa5bb4fcc84b205501bcb93462178ea85485ecddad40d773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nganguia, H.</creatorcontrib><creatorcontrib>Young, Y.-N.</creatorcontrib><creatorcontrib>Layton, A. T.</creatorcontrib><creatorcontrib>Hu, W.-F.</creatorcontrib><creatorcontrib>Lai, M.-C.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nganguia, H.</au><au>Young, Y.-N.</au><au>Layton, A. T.</au><au>Hu, W.-F.</au><au>Lai, M.-C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Immersed Interface Method for Axisymmetric Electrohydrodynamic Simulations in Stokes flow</atitle><jtitle>Communications in computational physics</jtitle><addtitle>Commun. Comput. Phys</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>18</volume><issue>2</issue><spage>429</spage><epage>449</epage><pages>429-449</pages><issn>1815-2406</issn><eissn>1991-7120</eissn><abstract>A numerical scheme based on the immersed interface method (IIM) is developed to simulate the dynamics of an axisymmetric viscous drop under an electric field. In this work, the IIM is used to solve both the fluid velocity field and the electric potential field. Detailed numerical studies on the numerical scheme show a second-order convergence. Moreover, our numerical scheme is validated by the good agreement with previous analytical models, and numerical results from the boundary integral simulations. Our method can be extended to Navier-Stokes fluid flow with nonlinear inertia effects.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.4208/cicp.171014.270315a</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1815-2406
ispartof Communications in computational physics, 2015-08, Vol.18 (2), p.429-449
issn 1815-2406
1991-7120
language eng
recordid cdi_crossref_primary_10_4208_cicp_171014_270315a
source Cambridge Journals
title An Immersed Interface Method for Axisymmetric Electrohydrodynamic Simulations in Stokes flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Immersed%20Interface%20Method%20for%20Axisymmetric%20Electrohydrodynamic%20Simulations%20in%20Stokes%20flow&rft.jtitle=Communications%20in%20computational%20physics&rft.au=Nganguia,%20H.&rft.date=2015-08-01&rft.volume=18&rft.issue=2&rft.spage=429&rft.epage=449&rft.pages=429-449&rft.issn=1815-2406&rft.eissn=1991-7120&rft_id=info:doi/10.4208/cicp.171014.270315a&rft_dat=%3Ccambridge_cross%3E10_4208_cicp_171014_270315a%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_4208_cicp_171014_270315a&rfr_iscdi=true