Simulation of Incompressible Free Surface Flow Using the Volume Preserving Level Set Method
This study aims to develop a numerical scheme in collocated Cartesian grids to solve the level set equation together with the incompressible two-phase flow equations. A seventh-order accurate upwinding combined compact difference (UCCD7) scheme has been developed for the approximation of the first-o...
Gespeichert in:
Veröffentlicht in: | Communications in computational physics 2015-10, Vol.18 (4), p.931-956 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 956 |
---|---|
container_issue | 4 |
container_start_page | 931 |
container_title | Communications in computational physics |
container_volume | 18 |
creator | Yu, Ching-Hao Sheu, Tony Wen-Hann |
description | This study aims to develop a numerical scheme in collocated Cartesian grids to solve the level set equation together with the incompressible two-phase flow equations. A seventh-order accurate upwinding combined compact difference (UCCD7) scheme has been developed for the approximation of the first-order spatial derivative terms shown in the level set equation. Developed scheme has a higher accuracy with a three-point grid stencil to minimize phase error. To preserve the mass of each phase all the time, the temporal derivative term in the level set equation is approximated by the sixth-order accurate symplectic Runge-Kutta (SRK6) scheme. All the simulated results for the dam-break, Rayleigh-Taylor instability, bubble rising, two-bubble merging, and milkcrown problems in two and three dimensions agree well with the available numerical or experimental results. |
doi_str_mv | 10.4208/cicp.081214.240515s |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4208_cicp_081214_240515s</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4208_cicp_081214_240515s</cupid><sourcerecordid>10_4208_cicp_081214_240515s</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-8d733d09c8f71892fdd32033f0e88c9c6019e1ff0fb8640e176d151a63d2812a3</originalsourceid><addsrcrecordid>eNp9kMtOAjEUhhujiYg-gZu-wGBPO5d2aYgoCUYTxI2LSWlPYcjMlLQzGN7eIbB2da7_n3M-Qh6BTVLO5JOpzH7CJHBIJzxlGWTxioxAKUgK4Ox6yCVkyTDKb8ldjDvGMiUKNSI_y6rpa91VvqXe0XlrfLMPGGO1rpHOAiJd9sFpMxS1_6WrWLUb2m2Rfvu6b5B-DssYDqfuAg9Y0yV29B27rbf35MbpOuLDJY7JavbyNX1LFh-v8-nzIjFcZV0ibSGEZcpIV4BU3FkrOBPCMZTSKJMzUAjOMbeWecoQitxCBjoXlg8vazEm4uxrgo8xoCv3oWp0OJbAyhOf8sSnPPMpL3wGVXZR6WYdKrvBcuf70A6X_qv7A2d1a0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulation of Incompressible Free Surface Flow Using the Volume Preserving Level Set Method</title><source>Cambridge University Press Journals Complete</source><creator>Yu, Ching-Hao ; Sheu, Tony Wen-Hann</creator><creatorcontrib>Yu, Ching-Hao ; Sheu, Tony Wen-Hann</creatorcontrib><description>This study aims to develop a numerical scheme in collocated Cartesian grids to solve the level set equation together with the incompressible two-phase flow equations. A seventh-order accurate upwinding combined compact difference (UCCD7) scheme has been developed for the approximation of the first-order spatial derivative terms shown in the level set equation. Developed scheme has a higher accuracy with a three-point grid stencil to minimize phase error. To preserve the mass of each phase all the time, the temporal derivative term in the level set equation is approximated by the sixth-order accurate symplectic Runge-Kutta (SRK6) scheme. All the simulated results for the dam-break, Rayleigh-Taylor instability, bubble rising, two-bubble merging, and milkcrown problems in two and three dimensions agree well with the available numerical or experimental results.</description><identifier>ISSN: 1815-2406</identifier><identifier>EISSN: 1991-7120</identifier><identifier>DOI: 10.4208/cicp.081214.240515s</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Communications in computational physics, 2015-10, Vol.18 (4), p.931-956</ispartof><rights>Copyright © Global-Science Press 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-8d733d09c8f71892fdd32033f0e88c9c6019e1ff0fb8640e176d151a63d2812a3</citedby><cites>FETCH-LOGICAL-c295t-8d733d09c8f71892fdd32033f0e88c9c6019e1ff0fb8640e176d151a63d2812a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1815240615000894/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Yu, Ching-Hao</creatorcontrib><creatorcontrib>Sheu, Tony Wen-Hann</creatorcontrib><title>Simulation of Incompressible Free Surface Flow Using the Volume Preserving Level Set Method</title><title>Communications in computational physics</title><addtitle>Commun. Comput. Phys</addtitle><description>This study aims to develop a numerical scheme in collocated Cartesian grids to solve the level set equation together with the incompressible two-phase flow equations. A seventh-order accurate upwinding combined compact difference (UCCD7) scheme has been developed for the approximation of the first-order spatial derivative terms shown in the level set equation. Developed scheme has a higher accuracy with a three-point grid stencil to minimize phase error. To preserve the mass of each phase all the time, the temporal derivative term in the level set equation is approximated by the sixth-order accurate symplectic Runge-Kutta (SRK6) scheme. All the simulated results for the dam-break, Rayleigh-Taylor instability, bubble rising, two-bubble merging, and milkcrown problems in two and three dimensions agree well with the available numerical or experimental results.</description><issn>1815-2406</issn><issn>1991-7120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAjEUhhujiYg-gZu-wGBPO5d2aYgoCUYTxI2LSWlPYcjMlLQzGN7eIbB2da7_n3M-Qh6BTVLO5JOpzH7CJHBIJzxlGWTxioxAKUgK4Ox6yCVkyTDKb8ldjDvGMiUKNSI_y6rpa91VvqXe0XlrfLMPGGO1rpHOAiJd9sFpMxS1_6WrWLUb2m2Rfvu6b5B-DssYDqfuAg9Y0yV29B27rbf35MbpOuLDJY7JavbyNX1LFh-v8-nzIjFcZV0ibSGEZcpIV4BU3FkrOBPCMZTSKJMzUAjOMbeWecoQitxCBjoXlg8vazEm4uxrgo8xoCv3oWp0OJbAyhOf8sSnPPMpL3wGVXZR6WYdKrvBcuf70A6X_qv7A2d1a0k</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Yu, Ching-Hao</creator><creator>Sheu, Tony Wen-Hann</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151001</creationdate><title>Simulation of Incompressible Free Surface Flow Using the Volume Preserving Level Set Method</title><author>Yu, Ching-Hao ; Sheu, Tony Wen-Hann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-8d733d09c8f71892fdd32033f0e88c9c6019e1ff0fb8640e176d151a63d2812a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ching-Hao</creatorcontrib><creatorcontrib>Sheu, Tony Wen-Hann</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ching-Hao</au><au>Sheu, Tony Wen-Hann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Incompressible Free Surface Flow Using the Volume Preserving Level Set Method</atitle><jtitle>Communications in computational physics</jtitle><addtitle>Commun. Comput. Phys</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>18</volume><issue>4</issue><spage>931</spage><epage>956</epage><pages>931-956</pages><issn>1815-2406</issn><eissn>1991-7120</eissn><abstract>This study aims to develop a numerical scheme in collocated Cartesian grids to solve the level set equation together with the incompressible two-phase flow equations. A seventh-order accurate upwinding combined compact difference (UCCD7) scheme has been developed for the approximation of the first-order spatial derivative terms shown in the level set equation. Developed scheme has a higher accuracy with a three-point grid stencil to minimize phase error. To preserve the mass of each phase all the time, the temporal derivative term in the level set equation is approximated by the sixth-order accurate symplectic Runge-Kutta (SRK6) scheme. All the simulated results for the dam-break, Rayleigh-Taylor instability, bubble rising, two-bubble merging, and milkcrown problems in two and three dimensions agree well with the available numerical or experimental results.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.4208/cicp.081214.240515s</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1815-2406 |
ispartof | Communications in computational physics, 2015-10, Vol.18 (4), p.931-956 |
issn | 1815-2406 1991-7120 |
language | eng |
recordid | cdi_crossref_primary_10_4208_cicp_081214_240515s |
source | Cambridge University Press Journals Complete |
title | Simulation of Incompressible Free Surface Flow Using the Volume Preserving Level Set Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Incompressible%20Free%20Surface%20Flow%20Using%20the%20Volume%20Preserving%20Level%20Set%20Method&rft.jtitle=Communications%20in%20computational%20physics&rft.au=Yu,%20Ching-Hao&rft.date=2015-10-01&rft.volume=18&rft.issue=4&rft.spage=931&rft.epage=956&rft.pages=931-956&rft.issn=1815-2406&rft.eissn=1991-7120&rft_id=info:doi/10.4208/cicp.081214.240515s&rft_dat=%3Ccambridge_cross%3E10_4208_cicp_081214_240515s%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_4208_cicp_081214_240515s&rfr_iscdi=true |