Simulation of Incompressible Free Surface Flow Using the Volume Preserving Level Set Method

This study aims to develop a numerical scheme in collocated Cartesian grids to solve the level set equation together with the incompressible two-phase flow equations. A seventh-order accurate upwinding combined compact difference (UCCD7) scheme has been developed for the approximation of the first-o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in computational physics 2015-10, Vol.18 (4), p.931-956
Hauptverfasser: Yu, Ching-Hao, Sheu, Tony Wen-Hann
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 956
container_issue 4
container_start_page 931
container_title Communications in computational physics
container_volume 18
creator Yu, Ching-Hao
Sheu, Tony Wen-Hann
description This study aims to develop a numerical scheme in collocated Cartesian grids to solve the level set equation together with the incompressible two-phase flow equations. A seventh-order accurate upwinding combined compact difference (UCCD7) scheme has been developed for the approximation of the first-order spatial derivative terms shown in the level set equation. Developed scheme has a higher accuracy with a three-point grid stencil to minimize phase error. To preserve the mass of each phase all the time, the temporal derivative term in the level set equation is approximated by the sixth-order accurate symplectic Runge-Kutta (SRK6) scheme. All the simulated results for the dam-break, Rayleigh-Taylor instability, bubble rising, two-bubble merging, and milkcrown problems in two and three dimensions agree well with the available numerical or experimental results.
doi_str_mv 10.4208/cicp.081214.240515s
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4208_cicp_081214_240515s</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4208_cicp_081214_240515s</cupid><sourcerecordid>10_4208_cicp_081214_240515s</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-8d733d09c8f71892fdd32033f0e88c9c6019e1ff0fb8640e176d151a63d2812a3</originalsourceid><addsrcrecordid>eNp9kMtOAjEUhhujiYg-gZu-wGBPO5d2aYgoCUYTxI2LSWlPYcjMlLQzGN7eIbB2da7_n3M-Qh6BTVLO5JOpzH7CJHBIJzxlGWTxioxAKUgK4Ox6yCVkyTDKb8ldjDvGMiUKNSI_y6rpa91VvqXe0XlrfLMPGGO1rpHOAiJd9sFpMxS1_6WrWLUb2m2Rfvu6b5B-DssYDqfuAg9Y0yV29B27rbf35MbpOuLDJY7JavbyNX1LFh-v8-nzIjFcZV0ibSGEZcpIV4BU3FkrOBPCMZTSKJMzUAjOMbeWecoQitxCBjoXlg8vazEm4uxrgo8xoCv3oWp0OJbAyhOf8sSnPPMpL3wGVXZR6WYdKrvBcuf70A6X_qv7A2d1a0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulation of Incompressible Free Surface Flow Using the Volume Preserving Level Set Method</title><source>Cambridge University Press Journals Complete</source><creator>Yu, Ching-Hao ; Sheu, Tony Wen-Hann</creator><creatorcontrib>Yu, Ching-Hao ; Sheu, Tony Wen-Hann</creatorcontrib><description>This study aims to develop a numerical scheme in collocated Cartesian grids to solve the level set equation together with the incompressible two-phase flow equations. A seventh-order accurate upwinding combined compact difference (UCCD7) scheme has been developed for the approximation of the first-order spatial derivative terms shown in the level set equation. Developed scheme has a higher accuracy with a three-point grid stencil to minimize phase error. To preserve the mass of each phase all the time, the temporal derivative term in the level set equation is approximated by the sixth-order accurate symplectic Runge-Kutta (SRK6) scheme. All the simulated results for the dam-break, Rayleigh-Taylor instability, bubble rising, two-bubble merging, and milkcrown problems in two and three dimensions agree well with the available numerical or experimental results.</description><identifier>ISSN: 1815-2406</identifier><identifier>EISSN: 1991-7120</identifier><identifier>DOI: 10.4208/cicp.081214.240515s</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Communications in computational physics, 2015-10, Vol.18 (4), p.931-956</ispartof><rights>Copyright © Global-Science Press 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-8d733d09c8f71892fdd32033f0e88c9c6019e1ff0fb8640e176d151a63d2812a3</citedby><cites>FETCH-LOGICAL-c295t-8d733d09c8f71892fdd32033f0e88c9c6019e1ff0fb8640e176d151a63d2812a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1815240615000894/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Yu, Ching-Hao</creatorcontrib><creatorcontrib>Sheu, Tony Wen-Hann</creatorcontrib><title>Simulation of Incompressible Free Surface Flow Using the Volume Preserving Level Set Method</title><title>Communications in computational physics</title><addtitle>Commun. Comput. Phys</addtitle><description>This study aims to develop a numerical scheme in collocated Cartesian grids to solve the level set equation together with the incompressible two-phase flow equations. A seventh-order accurate upwinding combined compact difference (UCCD7) scheme has been developed for the approximation of the first-order spatial derivative terms shown in the level set equation. Developed scheme has a higher accuracy with a three-point grid stencil to minimize phase error. To preserve the mass of each phase all the time, the temporal derivative term in the level set equation is approximated by the sixth-order accurate symplectic Runge-Kutta (SRK6) scheme. All the simulated results for the dam-break, Rayleigh-Taylor instability, bubble rising, two-bubble merging, and milkcrown problems in two and three dimensions agree well with the available numerical or experimental results.</description><issn>1815-2406</issn><issn>1991-7120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAjEUhhujiYg-gZu-wGBPO5d2aYgoCUYTxI2LSWlPYcjMlLQzGN7eIbB2da7_n3M-Qh6BTVLO5JOpzH7CJHBIJzxlGWTxioxAKUgK4Ox6yCVkyTDKb8ldjDvGMiUKNSI_y6rpa91VvqXe0XlrfLMPGGO1rpHOAiJd9sFpMxS1_6WrWLUb2m2Rfvu6b5B-DssYDqfuAg9Y0yV29B27rbf35MbpOuLDJY7JavbyNX1LFh-v8-nzIjFcZV0ibSGEZcpIV4BU3FkrOBPCMZTSKJMzUAjOMbeWecoQitxCBjoXlg8vazEm4uxrgo8xoCv3oWp0OJbAyhOf8sSnPPMpL3wGVXZR6WYdKrvBcuf70A6X_qv7A2d1a0k</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Yu, Ching-Hao</creator><creator>Sheu, Tony Wen-Hann</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151001</creationdate><title>Simulation of Incompressible Free Surface Flow Using the Volume Preserving Level Set Method</title><author>Yu, Ching-Hao ; Sheu, Tony Wen-Hann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-8d733d09c8f71892fdd32033f0e88c9c6019e1ff0fb8640e176d151a63d2812a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ching-Hao</creatorcontrib><creatorcontrib>Sheu, Tony Wen-Hann</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ching-Hao</au><au>Sheu, Tony Wen-Hann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Incompressible Free Surface Flow Using the Volume Preserving Level Set Method</atitle><jtitle>Communications in computational physics</jtitle><addtitle>Commun. Comput. Phys</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>18</volume><issue>4</issue><spage>931</spage><epage>956</epage><pages>931-956</pages><issn>1815-2406</issn><eissn>1991-7120</eissn><abstract>This study aims to develop a numerical scheme in collocated Cartesian grids to solve the level set equation together with the incompressible two-phase flow equations. A seventh-order accurate upwinding combined compact difference (UCCD7) scheme has been developed for the approximation of the first-order spatial derivative terms shown in the level set equation. Developed scheme has a higher accuracy with a three-point grid stencil to minimize phase error. To preserve the mass of each phase all the time, the temporal derivative term in the level set equation is approximated by the sixth-order accurate symplectic Runge-Kutta (SRK6) scheme. All the simulated results for the dam-break, Rayleigh-Taylor instability, bubble rising, two-bubble merging, and milkcrown problems in two and three dimensions agree well with the available numerical or experimental results.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.4208/cicp.081214.240515s</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1815-2406
ispartof Communications in computational physics, 2015-10, Vol.18 (4), p.931-956
issn 1815-2406
1991-7120
language eng
recordid cdi_crossref_primary_10_4208_cicp_081214_240515s
source Cambridge University Press Journals Complete
title Simulation of Incompressible Free Surface Flow Using the Volume Preserving Level Set Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Incompressible%20Free%20Surface%20Flow%20Using%20the%20Volume%20Preserving%20Level%20Set%20Method&rft.jtitle=Communications%20in%20computational%20physics&rft.au=Yu,%20Ching-Hao&rft.date=2015-10-01&rft.volume=18&rft.issue=4&rft.spage=931&rft.epage=956&rft.pages=931-956&rft.issn=1815-2406&rft.eissn=1991-7120&rft_id=info:doi/10.4208/cicp.081214.240515s&rft_dat=%3Ccambridge_cross%3E10_4208_cicp_081214_240515s%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_4208_cicp_081214_240515s&rfr_iscdi=true