Operator-Theoretic Positivstellensätze

We study the structure of positive polynomials with coefficients in an operator algebra as a non-commutative infinite-dimensional analogue of Hilbert's 17-th problem.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für Analysis und ihre Anwendungen 2003-01, Vol.22 (2), p.299-314
Hauptverfasser: Ambrozie, C.-G, Vasilescu, F.-H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue 2
container_start_page 299
container_title Zeitschrift für Analysis und ihre Anwendungen
container_volume 22
creator Ambrozie, C.-G
Vasilescu, F.-H
description We study the structure of positive polynomials with coefficients in an operator algebra as a non-commutative infinite-dimensional analogue of Hilbert's 17-th problem.
doi_str_mv 10.4171/ZAA/1147
format Article
fullrecord <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_zaa_1147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_ZAA_1147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d4465aa69e9e51cf0ee6c543575c1e5cf5d44f3775e4fa47c73382f4a48b00613</originalsourceid><addsrcrecordid>eNo90M9KAzEQBvAgCi614CN4EPQSm0kmSXtciv-gUA_14iWkcYIr225JomCfxzfxxdyy4mkY-PEx3zB2DuIGwcLkpa4nAGiPWAXGAEet8JhVQirJpTB4ysY5N-t-V0ZakBW7Wu4o-dIlvnqjLlFpwsVTl5vSfOZCbUvb_PNd9nTGTqJvM43_5og9392u5g98sbx_nNcLHpS0hb8iGu29mdGMNIQoiEzQqLTVAUiHqHsRlbWaMHq0wSo1lRE9TtdCGFAjdj3khtTlnCi6XWo2Pn05EO7Q0e29d4eOPb0cKG2ye-8-0rY_7J_1rxjYL24AT48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Operator-Theoretic Positivstellensätze</title><source>European Mathematical Society Publishing House</source><creator>Ambrozie, C.-G ; Vasilescu, F.-H</creator><creatorcontrib>Ambrozie, C.-G ; Vasilescu, F.-H</creatorcontrib><description>We study the structure of positive polynomials with coefficients in an operator algebra as a non-commutative infinite-dimensional analogue of Hilbert's 17-th problem.</description><identifier>ISSN: 0232-2064</identifier><identifier>EISSN: 1661-4534</identifier><identifier>DOI: 10.4171/ZAA/1147</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Operator theory</subject><ispartof>Zeitschrift für Analysis und ihre Anwendungen, 2003-01, Vol.22 (2), p.299-314</ispartof><rights>European Mathematical Society (from 2006)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d4465aa69e9e51cf0ee6c543575c1e5cf5d44f3775e4fa47c73382f4a48b00613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,24053,27924,27925</link.rule.ids></links><search><creatorcontrib>Ambrozie, C.-G</creatorcontrib><creatorcontrib>Vasilescu, F.-H</creatorcontrib><title>Operator-Theoretic Positivstellensätze</title><title>Zeitschrift für Analysis und ihre Anwendungen</title><addtitle>Z. Anal. Anwend</addtitle><description>We study the structure of positive polynomials with coefficients in an operator algebra as a non-commutative infinite-dimensional analogue of Hilbert's 17-th problem.</description><subject>Operator theory</subject><issn>0232-2064</issn><issn>1661-4534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNo90M9KAzEQBvAgCi614CN4EPQSm0kmSXtciv-gUA_14iWkcYIr225JomCfxzfxxdyy4mkY-PEx3zB2DuIGwcLkpa4nAGiPWAXGAEet8JhVQirJpTB4ysY5N-t-V0ZakBW7Wu4o-dIlvnqjLlFpwsVTl5vSfOZCbUvb_PNd9nTGTqJvM43_5og9392u5g98sbx_nNcLHpS0hb8iGu29mdGMNIQoiEzQqLTVAUiHqHsRlbWaMHq0wSo1lRE9TtdCGFAjdj3khtTlnCi6XWo2Pn05EO7Q0e29d4eOPb0cKG2ye-8-0rY_7J_1rxjYL24AT48</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Ambrozie, C.-G</creator><creator>Vasilescu, F.-H</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030101</creationdate><title>Operator-Theoretic Positivstellensätze</title><author>Ambrozie, C.-G ; Vasilescu, F.-H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d4465aa69e9e51cf0ee6c543575c1e5cf5d44f3775e4fa47c73382f4a48b00613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Operator theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambrozie, C.-G</creatorcontrib><creatorcontrib>Vasilescu, F.-H</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für Analysis und ihre Anwendungen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambrozie, C.-G</au><au>Vasilescu, F.-H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operator-Theoretic Positivstellensätze</atitle><jtitle>Zeitschrift für Analysis und ihre Anwendungen</jtitle><addtitle>Z. Anal. Anwend</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>22</volume><issue>2</issue><spage>299</spage><epage>314</epage><pages>299-314</pages><issn>0232-2064</issn><eissn>1661-4534</eissn><abstract>We study the structure of positive polynomials with coefficients in an operator algebra as a non-commutative infinite-dimensional analogue of Hilbert's 17-th problem.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/ZAA/1147</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0232-2064
ispartof Zeitschrift für Analysis und ihre Anwendungen, 2003-01, Vol.22 (2), p.299-314
issn 0232-2064
1661-4534
language eng
recordid cdi_crossref_primary_10_4171_zaa_1147
source European Mathematical Society Publishing House
subjects Operator theory
title Operator-Theoretic Positivstellensätze
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operator-Theoretic%20Positivstellens%C3%A4tze&rft.jtitle=Zeitschrift%20f%C3%BCr%20Analysis%20und%20ihre%20Anwendungen&rft.au=Ambrozie,%20C.-G&rft.date=2003-01-01&rft.volume=22&rft.issue=2&rft.spage=299&rft.epage=314&rft.pages=299-314&rft.issn=0232-2064&rft.eissn=1661-4534&rft_id=info:doi/10.4171/ZAA/1147&rft_dat=%3Cems_cross%3E10_4171_ZAA_1147%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true