On Gaussian decay rates of harmonic oscillators and equivalences of related Fourier uncertainty principles

We make progress on a question posed by Vemuri on the optimal Gaussian decay of harmonic oscillators, proving the original conjecture up to an arithmetic progression of times. The techniques used are a suitable translation of the problem at hand in terms of the free Schrödinger equation, the machine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2024-01, Vol.40 (2), p.481-502
Hauptverfasser: Kulikov, Aleksei, Oliveira, Lucas, Ramos, João P. G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 502
container_issue 2
container_start_page 481
container_title Revista matemática iberoamericana
container_volume 40
creator Kulikov, Aleksei
Oliveira, Lucas
Ramos, João P. G.
description We make progress on a question posed by Vemuri on the optimal Gaussian decay of harmonic oscillators, proving the original conjecture up to an arithmetic progression of times. The techniques used are a suitable translation of the problem at hand in terms of the free Schrödinger equation, the machinery developed in the work of Cowling, Escauriaza, Kenig, Ponce and Vega (2010), and a lemma which relates decay on average to pointwise decay. Such a lemma produces many more consequences in terms of equivalences of uncertainty principles. Complementing such results, we provide endpoint results in particular classes induced by certain Laplace transforms, both to the decay lemma and to the remaining cases of Vemuri’s conjecture, shedding light on the full endpoint question.
doi_str_mv 10.4171/rmi/1426
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_rmi_1426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_rmi_1426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-7d29ae0e210034c06f0a12716d1256f80a6b9811e935807afd275de50321ba663</originalsourceid><addsrcrecordid>eNotkEFLw0AUhBdRMFbBn7BHL7Hv7Sab9CjFVqHQi57D6-4Lbkk3dTcR-u9NaU8DM8MwfEI8I7wWWOE8HvwcC2VuRKaULnMwaG5FBgp1PhlwLx5S2gOoAgAysd8GuaYxJU9BOrZ0kpEGTrJv5Q_FQx-8lX2yvuto6GOSFJzk39H_UcfBXoqRp5CdXPVj9BzlOAVxIB-GkzxGH6w_dpwexV1LXeKnq87E9-r9a_mRb7brz-XbJrfK4JBXTi2IgRUC6MKCaYFQVWgcqtK0NZDZLWpEXuiyhopap6rScQla4Y6M0TPxctm1sU8pcttMHw4UTw1Cc2bUTIyaMyP9DzESWxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Gaussian decay rates of harmonic oscillators and equivalences of related Fourier uncertainty principles</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kulikov, Aleksei ; Oliveira, Lucas ; Ramos, João P. G.</creator><creatorcontrib>Kulikov, Aleksei ; Oliveira, Lucas ; Ramos, João P. G.</creatorcontrib><description>We make progress on a question posed by Vemuri on the optimal Gaussian decay of harmonic oscillators, proving the original conjecture up to an arithmetic progression of times. The techniques used are a suitable translation of the problem at hand in terms of the free Schrödinger equation, the machinery developed in the work of Cowling, Escauriaza, Kenig, Ponce and Vega (2010), and a lemma which relates decay on average to pointwise decay. Such a lemma produces many more consequences in terms of equivalences of uncertainty principles. Complementing such results, we provide endpoint results in particular classes induced by certain Laplace transforms, both to the decay lemma and to the remaining cases of Vemuri’s conjecture, shedding light on the full endpoint question.</description><identifier>ISSN: 0213-2230</identifier><identifier>EISSN: 2235-0616</identifier><identifier>DOI: 10.4171/rmi/1426</identifier><language>eng</language><ispartof>Revista matemática iberoamericana, 2024-01, Vol.40 (2), p.481-502</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-7d29ae0e210034c06f0a12716d1256f80a6b9811e935807afd275de50321ba663</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Kulikov, Aleksei</creatorcontrib><creatorcontrib>Oliveira, Lucas</creatorcontrib><creatorcontrib>Ramos, João P. G.</creatorcontrib><title>On Gaussian decay rates of harmonic oscillators and equivalences of related Fourier uncertainty principles</title><title>Revista matemática iberoamericana</title><description>We make progress on a question posed by Vemuri on the optimal Gaussian decay of harmonic oscillators, proving the original conjecture up to an arithmetic progression of times. The techniques used are a suitable translation of the problem at hand in terms of the free Schrödinger equation, the machinery developed in the work of Cowling, Escauriaza, Kenig, Ponce and Vega (2010), and a lemma which relates decay on average to pointwise decay. Such a lemma produces many more consequences in terms of equivalences of uncertainty principles. Complementing such results, we provide endpoint results in particular classes induced by certain Laplace transforms, both to the decay lemma and to the remaining cases of Vemuri’s conjecture, shedding light on the full endpoint question.</description><issn>0213-2230</issn><issn>2235-0616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkEFLw0AUhBdRMFbBn7BHL7Hv7Sab9CjFVqHQi57D6-4Lbkk3dTcR-u9NaU8DM8MwfEI8I7wWWOE8HvwcC2VuRKaULnMwaG5FBgp1PhlwLx5S2gOoAgAysd8GuaYxJU9BOrZ0kpEGTrJv5Q_FQx-8lX2yvuto6GOSFJzk39H_UcfBXoqRp5CdXPVj9BzlOAVxIB-GkzxGH6w_dpwexV1LXeKnq87E9-r9a_mRb7brz-XbJrfK4JBXTi2IgRUC6MKCaYFQVWgcqtK0NZDZLWpEXuiyhopap6rScQla4Y6M0TPxctm1sU8pcttMHw4UTw1Cc2bUTIyaMyP9DzESWxU</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Kulikov, Aleksei</creator><creator>Oliveira, Lucas</creator><creator>Ramos, João P. G.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240101</creationdate><title>On Gaussian decay rates of harmonic oscillators and equivalences of related Fourier uncertainty principles</title><author>Kulikov, Aleksei ; Oliveira, Lucas ; Ramos, João P. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-7d29ae0e210034c06f0a12716d1256f80a6b9811e935807afd275de50321ba663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulikov, Aleksei</creatorcontrib><creatorcontrib>Oliveira, Lucas</creatorcontrib><creatorcontrib>Ramos, João P. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Revista matemática iberoamericana</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulikov, Aleksei</au><au>Oliveira, Lucas</au><au>Ramos, João P. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Gaussian decay rates of harmonic oscillators and equivalences of related Fourier uncertainty principles</atitle><jtitle>Revista matemática iberoamericana</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>40</volume><issue>2</issue><spage>481</spage><epage>502</epage><pages>481-502</pages><issn>0213-2230</issn><eissn>2235-0616</eissn><abstract>We make progress on a question posed by Vemuri on the optimal Gaussian decay of harmonic oscillators, proving the original conjecture up to an arithmetic progression of times. The techniques used are a suitable translation of the problem at hand in terms of the free Schrödinger equation, the machinery developed in the work of Cowling, Escauriaza, Kenig, Ponce and Vega (2010), and a lemma which relates decay on average to pointwise decay. Such a lemma produces many more consequences in terms of equivalences of uncertainty principles. Complementing such results, we provide endpoint results in particular classes induced by certain Laplace transforms, both to the decay lemma and to the remaining cases of Vemuri’s conjecture, shedding light on the full endpoint question.</abstract><doi>10.4171/rmi/1426</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0213-2230
ispartof Revista matemática iberoamericana, 2024-01, Vol.40 (2), p.481-502
issn 0213-2230
2235-0616
language eng
recordid cdi_crossref_primary_10_4171_rmi_1426
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title On Gaussian decay rates of harmonic oscillators and equivalences of related Fourier uncertainty principles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Gaussian%20decay%20rates%20of%20harmonic%20oscillators%20and%20equivalences%20of%20related%20Fourier%20uncertainty%20principles&rft.jtitle=Revista%20matem%C3%A1tica%20iberoamericana&rft.au=Kulikov,%20Aleksei&rft.date=2024-01-01&rft.volume=40&rft.issue=2&rft.spage=481&rft.epage=502&rft.pages=481-502&rft.issn=0213-2230&rft.eissn=2235-0616&rft_id=info:doi/10.4171/rmi/1426&rft_dat=%3Ccrossref%3E10_4171_rmi_1426%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true