Viscosity solutions for junctions: well posedness and stability
We introduce a notion of state-constraint viscosity solutions for one dimensional ‘‘junction’’-type problems for Hamilton–Jacobi equations with non convex coercive Hamiltonians and study its well-posedness and stability properties. We show that viscosity approximations either select the state-constr...
Gespeichert in:
Veröffentlicht in: | Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni 2016-01, Vol.27 (4), p.535-545 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a notion of state-constraint viscosity solutions for one dimensional ‘‘junction’’-type problems for Hamilton–Jacobi equations with non convex coercive Hamiltonians and study its well-posedness and stability properties. We show that viscosity approximations either select the state-constraint solution or have a unique limit, and we introduce another type of approximation by fattening the domain. We also make connections with existing results for convex equations and discuss extensions to time and/or multi-dimensional problems. |
---|---|
ISSN: | 1120-6330 1720-0768 |
DOI: | 10.4171/RLM/747 |