Viscosity solutions for junctions: well posedness and stability

We introduce a notion of state-constraint viscosity solutions for one dimensional ‘‘junction’’-type problems for Hamilton–Jacobi equations with non convex coercive Hamiltonians and study its well-posedness and stability properties. We show that viscosity approximations either select the state-constr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni 2016-01, Vol.27 (4), p.535-545
Hauptverfasser: Lions, Pierre-Louis, Souganidis, Panagiotis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a notion of state-constraint viscosity solutions for one dimensional ‘‘junction’’-type problems for Hamilton–Jacobi equations with non convex coercive Hamiltonians and study its well-posedness and stability properties. We show that viscosity approximations either select the state-constraint solution or have a unique limit, and we introduce another type of approximation by fattening the domain. We also make connections with existing results for convex equations and discuss extensions to time and/or multi-dimensional problems.
ISSN:1120-6330
1720-0768
DOI:10.4171/RLM/747