Functoriality for Lagrangian correspondences in Floer theory

We associate to every monotone Lagrangian correspondence a functor between Donaldson–Fukaya categories. The composition of such functors agrees with the functor associated to the geometric composition of the correspondences, if the latter is embedded. That is “categorification commutes with composit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum topology 2010-06, Vol.1 (2), p.129-170
Hauptverfasser: Wehrheim, Katrin, Woodward, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue 2
container_start_page 129
container_title Quantum topology
container_volume 1
creator Wehrheim, Katrin
Woodward, Chris
description We associate to every monotone Lagrangian correspondence a functor between Donaldson–Fukaya categories. The composition of such functors agrees with the functor associated to the geometric composition of the correspondences, if the latter is embedded. That is “categorification commutes with composition” for Lagrangian correspondences. This construction fits into a symplectic 2-category with a categorification 2-functor, in which all correspondences are composable, and embedded geometric composition is isomorphic to the actual composition. As a consequence, any functor from a bordism category to the symplectic category gives rise to a category valued topological field theory.
doi_str_mv 10.4171/QT/4
format Article
fullrecord <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_qt_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_QT_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-877b37b11364682c086e35a4d5aa69e32c626a30aaf0cc6f2759b44739e1b8f73</originalsourceid><addsrcrecordid>eNo9j0FLwzAcxYMoOLZ9hxy81iVNmqTgRYbVQUEGFXYLaZbMji6Z_3SHfnurE9_lvcOPx3sILSh55FTS1bZZ8Rs0o0LwjEi2u_3NLONK7u7RMqUjmcQFUYTN0FN1CXaI0Jm-G0bsI-DaHMCEQ2cCthHApXMMexesS7gLuOqjAzx8ugjjAt150ye3_PM5-qhemvVbVr-_btbPdWYZKYZMSdky2VLKBBcqt0QJxwrD94UxonQstyIXhhFjPLFW-FwWZcu5ZKWjrfKSzdHDtddCTAmc12foTgZGTYn-Oa2_Bs0nDF8xd0r6GC8QplH_yLaZkG8qAVOP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Functoriality for Lagrangian correspondences in Floer theory</title><source>European Mathematical Society Publishing House</source><creator>Wehrheim, Katrin ; Woodward, Chris</creator><creatorcontrib>Wehrheim, Katrin ; Woodward, Chris</creatorcontrib><description>We associate to every monotone Lagrangian correspondence a functor between Donaldson–Fukaya categories. The composition of such functors agrees with the functor associated to the geometric composition of the correspondences, if the latter is embedded. That is “categorification commutes with composition” for Lagrangian correspondences. This construction fits into a symplectic 2-category with a categorification 2-functor, in which all correspondences are composable, and embedded geometric composition is isomorphic to the actual composition. As a consequence, any functor from a bordism category to the symplectic category gives rise to a category valued topological field theory.</description><identifier>ISSN: 1663-487X</identifier><identifier>EISSN: 1664-073X</identifier><identifier>DOI: 10.4171/QT/4</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Differential geometry ; Manifolds and cell complexes</subject><ispartof>Quantum topology, 2010-06, Vol.1 (2), p.129-170</ispartof><rights>European Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-877b37b11364682c086e35a4d5aa69e32c626a30aaf0cc6f2759b44739e1b8f73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,24053,27924,27925</link.rule.ids></links><search><creatorcontrib>Wehrheim, Katrin</creatorcontrib><creatorcontrib>Woodward, Chris</creatorcontrib><title>Functoriality for Lagrangian correspondences in Floer theory</title><title>Quantum topology</title><addtitle>Quantum Topol</addtitle><description>We associate to every monotone Lagrangian correspondence a functor between Donaldson–Fukaya categories. The composition of such functors agrees with the functor associated to the geometric composition of the correspondences, if the latter is embedded. That is “categorification commutes with composition” for Lagrangian correspondences. This construction fits into a symplectic 2-category with a categorification 2-functor, in which all correspondences are composable, and embedded geometric composition is isomorphic to the actual composition. As a consequence, any functor from a bordism category to the symplectic category gives rise to a category valued topological field theory.</description><subject>Differential geometry</subject><subject>Manifolds and cell complexes</subject><issn>1663-487X</issn><issn>1664-073X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9j0FLwzAcxYMoOLZ9hxy81iVNmqTgRYbVQUEGFXYLaZbMji6Z_3SHfnurE9_lvcOPx3sILSh55FTS1bZZ8Rs0o0LwjEi2u_3NLONK7u7RMqUjmcQFUYTN0FN1CXaI0Jm-G0bsI-DaHMCEQ2cCthHApXMMexesS7gLuOqjAzx8ugjjAt150ye3_PM5-qhemvVbVr-_btbPdWYZKYZMSdky2VLKBBcqt0QJxwrD94UxonQstyIXhhFjPLFW-FwWZcu5ZKWjrfKSzdHDtddCTAmc12foTgZGTYn-Oa2_Bs0nDF8xd0r6GC8QplH_yLaZkG8qAVOP</recordid><startdate>20100622</startdate><enddate>20100622</enddate><creator>Wehrheim, Katrin</creator><creator>Woodward, Chris</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100622</creationdate><title>Functoriality for Lagrangian correspondences in Floer theory</title><author>Wehrheim, Katrin ; Woodward, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-877b37b11364682c086e35a4d5aa69e32c626a30aaf0cc6f2759b44739e1b8f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Differential geometry</topic><topic>Manifolds and cell complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wehrheim, Katrin</creatorcontrib><creatorcontrib>Woodward, Chris</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum topology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wehrheim, Katrin</au><au>Woodward, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functoriality for Lagrangian correspondences in Floer theory</atitle><jtitle>Quantum topology</jtitle><addtitle>Quantum Topol</addtitle><date>2010-06-22</date><risdate>2010</risdate><volume>1</volume><issue>2</issue><spage>129</spage><epage>170</epage><pages>129-170</pages><issn>1663-487X</issn><eissn>1664-073X</eissn><abstract>We associate to every monotone Lagrangian correspondence a functor between Donaldson–Fukaya categories. The composition of such functors agrees with the functor associated to the geometric composition of the correspondences, if the latter is embedded. That is “categorification commutes with composition” for Lagrangian correspondences. This construction fits into a symplectic 2-category with a categorification 2-functor, in which all correspondences are composable, and embedded geometric composition is isomorphic to the actual composition. As a consequence, any functor from a bordism category to the symplectic category gives rise to a category valued topological field theory.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/QT/4</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1663-487X
ispartof Quantum topology, 2010-06, Vol.1 (2), p.129-170
issn 1663-487X
1664-073X
language eng
recordid cdi_crossref_primary_10_4171_qt_4
source European Mathematical Society Publishing House
subjects Differential geometry
Manifolds and cell complexes
title Functoriality for Lagrangian correspondences in Floer theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functoriality%20for%20Lagrangian%20correspondences%20in%20Floer%20theory&rft.jtitle=Quantum%20topology&rft.au=Wehrheim,%20Katrin&rft.date=2010-06-22&rft.volume=1&rft.issue=2&rft.spage=129&rft.epage=170&rft.pages=129-170&rft.issn=1663-487X&rft.eissn=1664-073X&rft_id=info:doi/10.4171/QT/4&rft_dat=%3Cems_cross%3E10_4171_QT_4%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true