Functoriality for Lagrangian correspondences in Floer theory
We associate to every monotone Lagrangian correspondence a functor between Donaldson–Fukaya categories. The composition of such functors agrees with the functor associated to the geometric composition of the correspondences, if the latter is embedded. That is “categorification commutes with composit...
Gespeichert in:
Veröffentlicht in: | Quantum topology 2010-06, Vol.1 (2), p.129-170 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170 |
---|---|
container_issue | 2 |
container_start_page | 129 |
container_title | Quantum topology |
container_volume | 1 |
creator | Wehrheim, Katrin Woodward, Chris |
description | We associate to every monotone Lagrangian correspondence a functor between Donaldson–Fukaya categories. The composition of such functors agrees with the functor associated to the geometric composition of the correspondences, if the latter is embedded. That is “categorification commutes with composition” for Lagrangian correspondences. This construction fits into a symplectic 2-category with a categorification 2-functor, in which all correspondences are composable, and embedded geometric composition is isomorphic to the actual composition. As a consequence, any functor from a bordism category to the symplectic category gives rise to a category valued topological field theory. |
doi_str_mv | 10.4171/QT/4 |
format | Article |
fullrecord | <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_qt_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_QT_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-877b37b11364682c086e35a4d5aa69e32c626a30aaf0cc6f2759b44739e1b8f73</originalsourceid><addsrcrecordid>eNo9j0FLwzAcxYMoOLZ9hxy81iVNmqTgRYbVQUEGFXYLaZbMji6Z_3SHfnurE9_lvcOPx3sILSh55FTS1bZZ8Rs0o0LwjEi2u_3NLONK7u7RMqUjmcQFUYTN0FN1CXaI0Jm-G0bsI-DaHMCEQ2cCthHApXMMexesS7gLuOqjAzx8ugjjAt150ye3_PM5-qhemvVbVr-_btbPdWYZKYZMSdky2VLKBBcqt0QJxwrD94UxonQstyIXhhFjPLFW-FwWZcu5ZKWjrfKSzdHDtddCTAmc12foTgZGTYn-Oa2_Bs0nDF8xd0r6GC8QplH_yLaZkG8qAVOP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Functoriality for Lagrangian correspondences in Floer theory</title><source>European Mathematical Society Publishing House</source><creator>Wehrheim, Katrin ; Woodward, Chris</creator><creatorcontrib>Wehrheim, Katrin ; Woodward, Chris</creatorcontrib><description>We associate to every monotone Lagrangian correspondence a functor between Donaldson–Fukaya categories. The composition of such functors agrees with the functor associated to the geometric composition of the correspondences, if the latter is embedded. That is “categorification commutes with composition” for Lagrangian correspondences. This construction fits into a symplectic 2-category with a categorification 2-functor, in which all correspondences are composable, and embedded geometric composition is isomorphic to the actual composition. As a consequence, any functor from a bordism category to the symplectic category gives rise to a category valued topological field theory.</description><identifier>ISSN: 1663-487X</identifier><identifier>EISSN: 1664-073X</identifier><identifier>DOI: 10.4171/QT/4</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Differential geometry ; Manifolds and cell complexes</subject><ispartof>Quantum topology, 2010-06, Vol.1 (2), p.129-170</ispartof><rights>European Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-877b37b11364682c086e35a4d5aa69e32c626a30aaf0cc6f2759b44739e1b8f73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,24053,27924,27925</link.rule.ids></links><search><creatorcontrib>Wehrheim, Katrin</creatorcontrib><creatorcontrib>Woodward, Chris</creatorcontrib><title>Functoriality for Lagrangian correspondences in Floer theory</title><title>Quantum topology</title><addtitle>Quantum Topol</addtitle><description>We associate to every monotone Lagrangian correspondence a functor between Donaldson–Fukaya categories. The composition of such functors agrees with the functor associated to the geometric composition of the correspondences, if the latter is embedded. That is “categorification commutes with composition” for Lagrangian correspondences. This construction fits into a symplectic 2-category with a categorification 2-functor, in which all correspondences are composable, and embedded geometric composition is isomorphic to the actual composition. As a consequence, any functor from a bordism category to the symplectic category gives rise to a category valued topological field theory.</description><subject>Differential geometry</subject><subject>Manifolds and cell complexes</subject><issn>1663-487X</issn><issn>1664-073X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9j0FLwzAcxYMoOLZ9hxy81iVNmqTgRYbVQUEGFXYLaZbMji6Z_3SHfnurE9_lvcOPx3sILSh55FTS1bZZ8Rs0o0LwjEi2u_3NLONK7u7RMqUjmcQFUYTN0FN1CXaI0Jm-G0bsI-DaHMCEQ2cCthHApXMMexesS7gLuOqjAzx8ugjjAt150ye3_PM5-qhemvVbVr-_btbPdWYZKYZMSdky2VLKBBcqt0QJxwrD94UxonQstyIXhhFjPLFW-FwWZcu5ZKWjrfKSzdHDtddCTAmc12foTgZGTYn-Oa2_Bs0nDF8xd0r6GC8QplH_yLaZkG8qAVOP</recordid><startdate>20100622</startdate><enddate>20100622</enddate><creator>Wehrheim, Katrin</creator><creator>Woodward, Chris</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100622</creationdate><title>Functoriality for Lagrangian correspondences in Floer theory</title><author>Wehrheim, Katrin ; Woodward, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-877b37b11364682c086e35a4d5aa69e32c626a30aaf0cc6f2759b44739e1b8f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Differential geometry</topic><topic>Manifolds and cell complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wehrheim, Katrin</creatorcontrib><creatorcontrib>Woodward, Chris</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum topology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wehrheim, Katrin</au><au>Woodward, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functoriality for Lagrangian correspondences in Floer theory</atitle><jtitle>Quantum topology</jtitle><addtitle>Quantum Topol</addtitle><date>2010-06-22</date><risdate>2010</risdate><volume>1</volume><issue>2</issue><spage>129</spage><epage>170</epage><pages>129-170</pages><issn>1663-487X</issn><eissn>1664-073X</eissn><abstract>We associate to every monotone Lagrangian correspondence a functor between Donaldson–Fukaya categories. The composition of such functors agrees with the functor associated to the geometric composition of the correspondences, if the latter is embedded. That is “categorification commutes with composition” for Lagrangian correspondences. This construction fits into a symplectic 2-category with a categorification 2-functor, in which all correspondences are composable, and embedded geometric composition is isomorphic to the actual composition. As a consequence, any functor from a bordism category to the symplectic category gives rise to a category valued topological field theory.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/QT/4</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1663-487X |
ispartof | Quantum topology, 2010-06, Vol.1 (2), p.129-170 |
issn | 1663-487X 1664-073X |
language | eng |
recordid | cdi_crossref_primary_10_4171_qt_4 |
source | European Mathematical Society Publishing House |
subjects | Differential geometry Manifolds and cell complexes |
title | Functoriality for Lagrangian correspondences in Floer theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functoriality%20for%20Lagrangian%20correspondences%20in%20Floer%20theory&rft.jtitle=Quantum%20topology&rft.au=Wehrheim,%20Katrin&rft.date=2010-06-22&rft.volume=1&rft.issue=2&rft.spage=129&rft.epage=170&rft.pages=129-170&rft.issn=1663-487X&rft.eissn=1664-073X&rft_id=info:doi/10.4171/QT/4&rft_dat=%3Cems_cross%3E10_4171_QT_4%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |