Supernilpotent semigroups
Regular abelian semigroups are isomorphic to a direct product of an abelian group and a rectangular band (Warne, 1994). Seeking for a similar result for nilpotency, solvability, and supernilpotency of regular semigroups, we obtain that an analogous statement is true only in orthodox semigroups. We p...
Gespeichert in:
Veröffentlicht in: | Portugaliae mathematica 2024-02, Vol.81 (3), p.307-320 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 320 |
---|---|
container_issue | 3 |
container_start_page | 307 |
container_title | Portugaliae mathematica |
container_volume | 81 |
creator | Radović, Jelena Mudrinski, Nebojša |
description | Regular abelian semigroups are isomorphic to a direct product of an abelian group and a rectangular band (Warne, 1994). Seeking for a similar result for nilpotency, solvability, and supernilpotency of regular semigroups, we obtain that an analogous statement is true only in orthodox semigroups. We provide an example that shows that the same does not have to be true in regular semigroups that are not orthodox. |
doi_str_mv | 10.4171/pm/2118 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_pm_2118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_pm_2118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c117t-86d92c90043f185917c62cfda2af985f2df1129875ff5c724008ad0fdfd0cc73</originalsourceid><addsrcrecordid>eNotzztLBDEUQOEgCo6rWNvZWY17783kVcriCxYs3D6EJFdGdnZCMlv472XR6nQHPiFuER4HNLgu05oQ7ZnoUGvqySh7LjoASb1CpS7FVWvfACS10524-zyWXA_jvsxLPiz3LU_jV52PpV2LCw77lm_-uxK7l-fd5q3ffry-b562fUQ0S291chQdwCAZrXJooqbIKVBgZxVTYkRy1ihmFQ0NADYk4MQJYjRyJR7-trHOrdXMvtRxCvXHI_gTyJfJn0DyFzd4PQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Supernilpotent semigroups</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Radović, Jelena ; Mudrinski, Nebojša</creator><creatorcontrib>Radović, Jelena ; Mudrinski, Nebojša</creatorcontrib><description>Regular abelian semigroups are isomorphic to a direct product of an abelian group and a rectangular band (Warne, 1994). Seeking for a similar result for nilpotency, solvability, and supernilpotency of regular semigroups, we obtain that an analogous statement is true only in orthodox semigroups. We provide an example that shows that the same does not have to be true in regular semigroups that are not orthodox.</description><identifier>ISSN: 0032-5155</identifier><identifier>EISSN: 1662-2758</identifier><identifier>DOI: 10.4171/pm/2118</identifier><language>eng</language><ispartof>Portugaliae mathematica, 2024-02, Vol.81 (3), p.307-320</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1023-4463 ; 0000-0001-9830-6603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27929,27930</link.rule.ids></links><search><creatorcontrib>Radović, Jelena</creatorcontrib><creatorcontrib>Mudrinski, Nebojša</creatorcontrib><title>Supernilpotent semigroups</title><title>Portugaliae mathematica</title><description>Regular abelian semigroups are isomorphic to a direct product of an abelian group and a rectangular band (Warne, 1994). Seeking for a similar result for nilpotency, solvability, and supernilpotency of regular semigroups, we obtain that an analogous statement is true only in orthodox semigroups. We provide an example that shows that the same does not have to be true in regular semigroups that are not orthodox.</description><issn>0032-5155</issn><issn>1662-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotzztLBDEUQOEgCo6rWNvZWY17783kVcriCxYs3D6EJFdGdnZCMlv472XR6nQHPiFuER4HNLgu05oQ7ZnoUGvqySh7LjoASb1CpS7FVWvfACS10524-zyWXA_jvsxLPiz3LU_jV52PpV2LCw77lm_-uxK7l-fd5q3ffry-b562fUQ0S291chQdwCAZrXJooqbIKVBgZxVTYkRy1ihmFQ0NADYk4MQJYjRyJR7-trHOrdXMvtRxCvXHI_gTyJfJn0DyFzd4PQY</recordid><startdate>20240221</startdate><enddate>20240221</enddate><creator>Radović, Jelena</creator><creator>Mudrinski, Nebojša</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1023-4463</orcidid><orcidid>https://orcid.org/0000-0001-9830-6603</orcidid></search><sort><creationdate>20240221</creationdate><title>Supernilpotent semigroups</title><author>Radović, Jelena ; Mudrinski, Nebojša</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c117t-86d92c90043f185917c62cfda2af985f2df1129875ff5c724008ad0fdfd0cc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radović, Jelena</creatorcontrib><creatorcontrib>Mudrinski, Nebojša</creatorcontrib><collection>CrossRef</collection><jtitle>Portugaliae mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radović, Jelena</au><au>Mudrinski, Nebojša</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supernilpotent semigroups</atitle><jtitle>Portugaliae mathematica</jtitle><date>2024-02-21</date><risdate>2024</risdate><volume>81</volume><issue>3</issue><spage>307</spage><epage>320</epage><pages>307-320</pages><issn>0032-5155</issn><eissn>1662-2758</eissn><abstract>Regular abelian semigroups are isomorphic to a direct product of an abelian group and a rectangular band (Warne, 1994). Seeking for a similar result for nilpotency, solvability, and supernilpotency of regular semigroups, we obtain that an analogous statement is true only in orthodox semigroups. We provide an example that shows that the same does not have to be true in regular semigroups that are not orthodox.</abstract><doi>10.4171/pm/2118</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1023-4463</orcidid><orcidid>https://orcid.org/0000-0001-9830-6603</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-5155 |
ispartof | Portugaliae mathematica, 2024-02, Vol.81 (3), p.307-320 |
issn | 0032-5155 1662-2758 |
language | eng |
recordid | cdi_crossref_primary_10_4171_pm_2118 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | Supernilpotent semigroups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supernilpotent%20semigroups&rft.jtitle=Portugaliae%20mathematica&rft.au=Radovi%C4%87,%20Jelena&rft.date=2024-02-21&rft.volume=81&rft.issue=3&rft.spage=307&rft.epage=320&rft.pages=307-320&rft.issn=0032-5155&rft.eissn=1662-2758&rft_id=info:doi/10.4171/pm/2118&rft_dat=%3Ccrossref%3E10_4171_pm_2118%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |