Supernilpotent semigroups

Regular abelian semigroups are isomorphic to a direct product of an abelian group and a rectangular band (Warne, 1994). Seeking for a similar result for nilpotency, solvability, and supernilpotency of regular semigroups, we obtain that an analogous statement is true only in orthodox semigroups. We p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Portugaliae mathematica 2024-02, Vol.81 (3), p.307-320
Hauptverfasser: Radović, Jelena, Mudrinski, Nebojša
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 320
container_issue 3
container_start_page 307
container_title Portugaliae mathematica
container_volume 81
creator Radović, Jelena
Mudrinski, Nebojša
description Regular abelian semigroups are isomorphic to a direct product of an abelian group and a rectangular band (Warne, 1994). Seeking for a similar result for nilpotency, solvability, and supernilpotency of regular semigroups, we obtain that an analogous statement is true only in orthodox semigroups. We provide an example that shows that the same does not have to be true in regular semigroups that are not orthodox.
doi_str_mv 10.4171/pm/2118
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_pm_2118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_pm_2118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c117t-86d92c90043f185917c62cfda2af985f2df1129875ff5c724008ad0fdfd0cc73</originalsourceid><addsrcrecordid>eNotzztLBDEUQOEgCo6rWNvZWY17783kVcriCxYs3D6EJFdGdnZCMlv472XR6nQHPiFuER4HNLgu05oQ7ZnoUGvqySh7LjoASb1CpS7FVWvfACS10524-zyWXA_jvsxLPiz3LU_jV52PpV2LCw77lm_-uxK7l-fd5q3ffry-b562fUQ0S291chQdwCAZrXJooqbIKVBgZxVTYkRy1ihmFQ0NADYk4MQJYjRyJR7-trHOrdXMvtRxCvXHI_gTyJfJn0DyFzd4PQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Supernilpotent semigroups</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Radović, Jelena ; Mudrinski, Nebojša</creator><creatorcontrib>Radović, Jelena ; Mudrinski, Nebojša</creatorcontrib><description>Regular abelian semigroups are isomorphic to a direct product of an abelian group and a rectangular band (Warne, 1994). Seeking for a similar result for nilpotency, solvability, and supernilpotency of regular semigroups, we obtain that an analogous statement is true only in orthodox semigroups. We provide an example that shows that the same does not have to be true in regular semigroups that are not orthodox.</description><identifier>ISSN: 0032-5155</identifier><identifier>EISSN: 1662-2758</identifier><identifier>DOI: 10.4171/pm/2118</identifier><language>eng</language><ispartof>Portugaliae mathematica, 2024-02, Vol.81 (3), p.307-320</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1023-4463 ; 0000-0001-9830-6603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27929,27930</link.rule.ids></links><search><creatorcontrib>Radović, Jelena</creatorcontrib><creatorcontrib>Mudrinski, Nebojša</creatorcontrib><title>Supernilpotent semigroups</title><title>Portugaliae mathematica</title><description>Regular abelian semigroups are isomorphic to a direct product of an abelian group and a rectangular band (Warne, 1994). Seeking for a similar result for nilpotency, solvability, and supernilpotency of regular semigroups, we obtain that an analogous statement is true only in orthodox semigroups. We provide an example that shows that the same does not have to be true in regular semigroups that are not orthodox.</description><issn>0032-5155</issn><issn>1662-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotzztLBDEUQOEgCo6rWNvZWY17783kVcriCxYs3D6EJFdGdnZCMlv472XR6nQHPiFuER4HNLgu05oQ7ZnoUGvqySh7LjoASb1CpS7FVWvfACS10524-zyWXA_jvsxLPiz3LU_jV52PpV2LCw77lm_-uxK7l-fd5q3ffry-b562fUQ0S291chQdwCAZrXJooqbIKVBgZxVTYkRy1ihmFQ0NADYk4MQJYjRyJR7-trHOrdXMvtRxCvXHI_gTyJfJn0DyFzd4PQY</recordid><startdate>20240221</startdate><enddate>20240221</enddate><creator>Radović, Jelena</creator><creator>Mudrinski, Nebojša</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1023-4463</orcidid><orcidid>https://orcid.org/0000-0001-9830-6603</orcidid></search><sort><creationdate>20240221</creationdate><title>Supernilpotent semigroups</title><author>Radović, Jelena ; Mudrinski, Nebojša</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c117t-86d92c90043f185917c62cfda2af985f2df1129875ff5c724008ad0fdfd0cc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radović, Jelena</creatorcontrib><creatorcontrib>Mudrinski, Nebojša</creatorcontrib><collection>CrossRef</collection><jtitle>Portugaliae mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radović, Jelena</au><au>Mudrinski, Nebojša</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supernilpotent semigroups</atitle><jtitle>Portugaliae mathematica</jtitle><date>2024-02-21</date><risdate>2024</risdate><volume>81</volume><issue>3</issue><spage>307</spage><epage>320</epage><pages>307-320</pages><issn>0032-5155</issn><eissn>1662-2758</eissn><abstract>Regular abelian semigroups are isomorphic to a direct product of an abelian group and a rectangular band (Warne, 1994). Seeking for a similar result for nilpotency, solvability, and supernilpotency of regular semigroups, we obtain that an analogous statement is true only in orthodox semigroups. We provide an example that shows that the same does not have to be true in regular semigroups that are not orthodox.</abstract><doi>10.4171/pm/2118</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1023-4463</orcidid><orcidid>https://orcid.org/0000-0001-9830-6603</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-5155
ispartof Portugaliae mathematica, 2024-02, Vol.81 (3), p.307-320
issn 0032-5155
1662-2758
language eng
recordid cdi_crossref_primary_10_4171_pm_2118
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Supernilpotent semigroups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supernilpotent%20semigroups&rft.jtitle=Portugaliae%20mathematica&rft.au=Radovi%C4%87,%20Jelena&rft.date=2024-02-21&rft.volume=81&rft.issue=3&rft.spage=307&rft.epage=320&rft.pages=307-320&rft.issn=0032-5155&rft.eissn=1662-2758&rft_id=info:doi/10.4171/pm/2118&rft_dat=%3Ccrossref%3E10_4171_pm_2118%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true