A fast method for solving a block tridiagonal quasi-Toeplitz linear system
This paper addresses the problem of solving block tridiagonal quasi-Toeplitz linear systems. Inspired by [10], we propose a more general algorithm for such systems. The algorithm is based on a block decomposition for block tridiagonal quasi-Toeplitz matrices and the Sherman–Morrison–Woodbury inversi...
Gespeichert in:
Veröffentlicht in: | Portugaliae mathematica 2019-01, Vol.76 (3), p.287-299 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 3 |
container_start_page | 287 |
container_title | Portugaliae mathematica |
container_volume | 76 |
creator | Belhaj, Skander Hcini, Fahd Zhang, Yulin |
description | This paper addresses the problem of solving block tridiagonal quasi-Toeplitz linear systems. Inspired by [10], we propose a more general algorithm for such systems. The algorithm is based on a block decomposition for block tridiagonal quasi-Toeplitz matrices and the Sherman–Morrison–Woodbury inversion formula. We also compare the proposed approach to the standard block $LU$ decomposition method and the Gauss algorithm. A theoretical error analysis is also presented. All algorithms have been implemented in Matlab. Numerical experiments performed on a wide variety of test problems show the effectiveness of our algorithm in terms of efficiency, stability and robustness. |
doi_str_mv | 10.4171/PM/2036 |
format | Article |
fullrecord | <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_pm_2036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_PM_2036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-f02e1d3bdba3cb238a308fa2013ddd4cfadff56c321fc554d93ecc265c792b043</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EEqUgfsESC1ahfsRuuqwqnmpFF2Vt3fhRXJI42Gml8vWkCmI1mzNHmkHolpKHnE7pZL2aMMLlGRpRKVnGpqI4RyNCOMsEFeISXaW0I4RxOZMj9DbHDlKHa9t9BoNdiDiF6uCbLQZcVkF_4S5642EbGqjw9x6SzzbBtpXvfnDlGwt945g6W1-jCwdVsjd_OUYfT4-bxUu2fH9-XcyXmeaUdpkjzFLDS1MC1yXjBXBSOGCEcmNMrh0Y54TUnFGnhcjNjFutmRR6OmMlyfkY3Q9eHUNK0TrVRl9DPCpK1OkC1dbqdEFP4oGMGqBV0R586iApWjCmZNFHj9wNiK2T2oV97Femf9F6NYh-AcydZPc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A fast method for solving a block tridiagonal quasi-Toeplitz linear system</title><source>European Mathematical Society Publishing House</source><creator>Belhaj, Skander ; Hcini, Fahd ; Zhang, Yulin</creator><creatorcontrib>Belhaj, Skander ; Hcini, Fahd ; Zhang, Yulin</creatorcontrib><description>This paper addresses the problem of solving block tridiagonal quasi-Toeplitz linear systems. Inspired by [10], we propose a more general algorithm for such systems. The algorithm is based on a block decomposition for block tridiagonal quasi-Toeplitz matrices and the Sherman–Morrison–Woodbury inversion formula. We also compare the proposed approach to the standard block $LU$ decomposition method and the Gauss algorithm. A theoretical error analysis is also presented. All algorithms have been implemented in Matlab. Numerical experiments performed on a wide variety of test problems show the effectiveness of our algorithm in terms of efficiency, stability and robustness.</description><identifier>ISSN: 0032-5155</identifier><identifier>EISSN: 1662-2758</identifier><identifier>DOI: 10.4171/PM/2036</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>block LU decomposition ; Ciências Naturais ; Linear and multilinear algebra ; Matemáticas ; matrix theory ; Numerical analysis ; Science & Technology ; Sherman–Morrison–Woodbury inversion formula ; System of linear equations</subject><ispartof>Portugaliae mathematica, 2019-01, Vol.76 (3), p.287-299</ispartof><rights>European Mathematical Society (from 2008)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-f02e1d3bdba3cb238a308fa2013ddd4cfadff56c321fc554d93ecc265c792b043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,24053,27924,27925</link.rule.ids></links><search><creatorcontrib>Belhaj, Skander</creatorcontrib><creatorcontrib>Hcini, Fahd</creatorcontrib><creatorcontrib>Zhang, Yulin</creatorcontrib><title>A fast method for solving a block tridiagonal quasi-Toeplitz linear system</title><title>Portugaliae mathematica</title><addtitle>Port. Math</addtitle><description>This paper addresses the problem of solving block tridiagonal quasi-Toeplitz linear systems. Inspired by [10], we propose a more general algorithm for such systems. The algorithm is based on a block decomposition for block tridiagonal quasi-Toeplitz matrices and the Sherman–Morrison–Woodbury inversion formula. We also compare the proposed approach to the standard block $LU$ decomposition method and the Gauss algorithm. A theoretical error analysis is also presented. All algorithms have been implemented in Matlab. Numerical experiments performed on a wide variety of test problems show the effectiveness of our algorithm in terms of efficiency, stability and robustness.</description><subject>block LU decomposition</subject><subject>Ciências Naturais</subject><subject>Linear and multilinear algebra</subject><subject>Matemáticas</subject><subject>matrix theory</subject><subject>Numerical analysis</subject><subject>Science & Technology</subject><subject>Sherman–Morrison–Woodbury inversion formula</subject><subject>System of linear equations</subject><issn>0032-5155</issn><issn>1662-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAURC0EEqUgfsESC1ahfsRuuqwqnmpFF2Vt3fhRXJI42Gml8vWkCmI1mzNHmkHolpKHnE7pZL2aMMLlGRpRKVnGpqI4RyNCOMsEFeISXaW0I4RxOZMj9DbHDlKHa9t9BoNdiDiF6uCbLQZcVkF_4S5642EbGqjw9x6SzzbBtpXvfnDlGwt945g6W1-jCwdVsjd_OUYfT4-bxUu2fH9-XcyXmeaUdpkjzFLDS1MC1yXjBXBSOGCEcmNMrh0Y54TUnFGnhcjNjFutmRR6OmMlyfkY3Q9eHUNK0TrVRl9DPCpK1OkC1dbqdEFP4oGMGqBV0R586iApWjCmZNFHj9wNiK2T2oV97Femf9F6NYh-AcydZPc</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Belhaj, Skander</creator><creator>Hcini, Fahd</creator><creator>Zhang, Yulin</creator><general>European Mathematical Society Publishing House</general><general>European Mathematical Society (EMS)</general><scope>RCLKO</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>A fast method for solving a block tridiagonal quasi-Toeplitz linear system</title><author>Belhaj, Skander ; Hcini, Fahd ; Zhang, Yulin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-f02e1d3bdba3cb238a308fa2013ddd4cfadff56c321fc554d93ecc265c792b043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>block LU decomposition</topic><topic>Ciências Naturais</topic><topic>Linear and multilinear algebra</topic><topic>Matemáticas</topic><topic>matrix theory</topic><topic>Numerical analysis</topic><topic>Science & Technology</topic><topic>Sherman–Morrison–Woodbury inversion formula</topic><topic>System of linear equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belhaj, Skander</creatorcontrib><creatorcontrib>Hcini, Fahd</creatorcontrib><creatorcontrib>Zhang, Yulin</creatorcontrib><collection>RCAAP open access repository</collection><collection>CrossRef</collection><jtitle>Portugaliae mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belhaj, Skander</au><au>Hcini, Fahd</au><au>Zhang, Yulin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast method for solving a block tridiagonal quasi-Toeplitz linear system</atitle><jtitle>Portugaliae mathematica</jtitle><addtitle>Port. Math</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>76</volume><issue>3</issue><spage>287</spage><epage>299</epage><pages>287-299</pages><issn>0032-5155</issn><eissn>1662-2758</eissn><abstract>This paper addresses the problem of solving block tridiagonal quasi-Toeplitz linear systems. Inspired by [10], we propose a more general algorithm for such systems. The algorithm is based on a block decomposition for block tridiagonal quasi-Toeplitz matrices and the Sherman–Morrison–Woodbury inversion formula. We also compare the proposed approach to the standard block $LU$ decomposition method and the Gauss algorithm. A theoretical error analysis is also presented. All algorithms have been implemented in Matlab. Numerical experiments performed on a wide variety of test problems show the effectiveness of our algorithm in terms of efficiency, stability and robustness.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/PM/2036</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-5155 |
ispartof | Portugaliae mathematica, 2019-01, Vol.76 (3), p.287-299 |
issn | 0032-5155 1662-2758 |
language | eng |
recordid | cdi_crossref_primary_10_4171_pm_2036 |
source | European Mathematical Society Publishing House |
subjects | block LU decomposition Ciências Naturais Linear and multilinear algebra Matemáticas matrix theory Numerical analysis Science & Technology Sherman–Morrison–Woodbury inversion formula System of linear equations |
title | A fast method for solving a block tridiagonal quasi-Toeplitz linear system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20method%20for%20solving%20a%20block%20tridiagonal%20quasi-Toeplitz%20linear%20system&rft.jtitle=Portugaliae%20mathematica&rft.au=Belhaj,%20Skander&rft.date=2019-01-01&rft.volume=76&rft.issue=3&rft.spage=287&rft.epage=299&rft.pages=287-299&rft.issn=0032-5155&rft.eissn=1662-2758&rft_id=info:doi/10.4171/PM/2036&rft_dat=%3Cems_cross%3E10_4171_PM_2036%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |