Mini-Worskhop: Artin Groups meet Triangulated Categories

Artin and Coxeter groups are naturally occurring generalisations of the braid and symmetric groups respectively. However, unlike for Coxeter groups, many basic group theoretic questions remain unanswered for general Artin groups – most notably the K(\pi,1) -conjecture for Artin groups remains open e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oberwolfach reports 2024-09, Vol.21 (1), p.203-234
Hauptverfasser: Boyd, Rachael, Heng, Edmund, Ozornova, Viktoriya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 1
container_start_page 203
container_title Oberwolfach reports
container_volume 21
creator Boyd, Rachael
Heng, Edmund
Ozornova, Viktoriya
description Artin and Coxeter groups are naturally occurring generalisations of the braid and symmetric groups respectively. However, unlike for Coxeter groups, many basic group theoretic questions remain unanswered for general Artin groups – most notably the K(\pi,1) -conjecture for Artin groups remains open except for certain special families of Artin groups. Recently, Artin groups have also appeared as groups acting on triangulated categories, where the associated spaces of Bridgeland’s stability conditions provide new realisations of the corresponding K(\pi,1) spaces. The aim of the workshop is to bring together experts and early career researchers from two seemingly different areas of research: (i) geometric and combinatorial group theory and topology, and (ii) triangulated categories and stability conditions, to explore their intersection via the K(\pi,1) -conjecture.
doi_str_mv 10.4171/owr/2024/4
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_owr_2024_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_owr_2024_4</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_4171_owr_2024_43</originalsourceid><addsrcrecordid>eNqVzjsLwjAUBeAgCtbH4i_ILNQmTazVTYqPxa3gGIKmNWqbcm-L-O9tQdxdzjnDGT5CZpwtJF_xwL0gCFkoA9kjHo8i5sdryfu_LcSQjBDvjIlIyqVH4pMtrX92gI-bqzZ0C7Ut6QFcUyEtjKlpClaXefPUtbnSpM3cgTU4IYNMP9FMvz0m8_0uTY7-BRwimExVYAsNb8WZ6myqtanOpqT46_wB-TxAmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mini-Worskhop: Artin Groups meet Triangulated Categories</title><source>Alma/SFX Local Collection</source><creator>Boyd, Rachael ; Heng, Edmund ; Ozornova, Viktoriya</creator><creatorcontrib>Boyd, Rachael ; Heng, Edmund ; Ozornova, Viktoriya</creatorcontrib><description>Artin and Coxeter groups are naturally occurring generalisations of the braid and symmetric groups respectively. However, unlike for Coxeter groups, many basic group theoretic questions remain unanswered for general Artin groups – most notably the K(\pi,1) -conjecture for Artin groups remains open except for certain special families of Artin groups. Recently, Artin groups have also appeared as groups acting on triangulated categories, where the associated spaces of Bridgeland’s stability conditions provide new realisations of the corresponding K(\pi,1) spaces. The aim of the workshop is to bring together experts and early career researchers from two seemingly different areas of research: (i) geometric and combinatorial group theory and topology, and (ii) triangulated categories and stability conditions, to explore their intersection via the K(\pi,1) -conjecture.</description><identifier>ISSN: 1660-8933</identifier><identifier>EISSN: 1660-8941</identifier><identifier>DOI: 10.4171/owr/2024/4</identifier><language>eng</language><ispartof>Oberwolfach reports, 2024-09, Vol.21 (1), p.203-234</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9257-077X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Boyd, Rachael</creatorcontrib><creatorcontrib>Heng, Edmund</creatorcontrib><creatorcontrib>Ozornova, Viktoriya</creatorcontrib><title>Mini-Worskhop: Artin Groups meet Triangulated Categories</title><title>Oberwolfach reports</title><description>Artin and Coxeter groups are naturally occurring generalisations of the braid and symmetric groups respectively. However, unlike for Coxeter groups, many basic group theoretic questions remain unanswered for general Artin groups – most notably the K(\pi,1) -conjecture for Artin groups remains open except for certain special families of Artin groups. Recently, Artin groups have also appeared as groups acting on triangulated categories, where the associated spaces of Bridgeland’s stability conditions provide new realisations of the corresponding K(\pi,1) spaces. The aim of the workshop is to bring together experts and early career researchers from two seemingly different areas of research: (i) geometric and combinatorial group theory and topology, and (ii) triangulated categories and stability conditions, to explore their intersection via the K(\pi,1) -conjecture.</description><issn>1660-8933</issn><issn>1660-8941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVzjsLwjAUBeAgCtbH4i_ILNQmTazVTYqPxa3gGIKmNWqbcm-L-O9tQdxdzjnDGT5CZpwtJF_xwL0gCFkoA9kjHo8i5sdryfu_LcSQjBDvjIlIyqVH4pMtrX92gI-bqzZ0C7Ut6QFcUyEtjKlpClaXefPUtbnSpM3cgTU4IYNMP9FMvz0m8_0uTY7-BRwimExVYAsNb8WZ6myqtanOpqT46_wB-TxAmw</recordid><startdate>20240930</startdate><enddate>20240930</enddate><creator>Boyd, Rachael</creator><creator>Heng, Edmund</creator><creator>Ozornova, Viktoriya</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9257-077X</orcidid></search><sort><creationdate>20240930</creationdate><title>Mini-Worskhop: Artin Groups meet Triangulated Categories</title><author>Boyd, Rachael ; Heng, Edmund ; Ozornova, Viktoriya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_4171_owr_2024_43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyd, Rachael</creatorcontrib><creatorcontrib>Heng, Edmund</creatorcontrib><creatorcontrib>Ozornova, Viktoriya</creatorcontrib><collection>CrossRef</collection><jtitle>Oberwolfach reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyd, Rachael</au><au>Heng, Edmund</au><au>Ozornova, Viktoriya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mini-Worskhop: Artin Groups meet Triangulated Categories</atitle><jtitle>Oberwolfach reports</jtitle><date>2024-09-30</date><risdate>2024</risdate><volume>21</volume><issue>1</issue><spage>203</spage><epage>234</epage><pages>203-234</pages><issn>1660-8933</issn><eissn>1660-8941</eissn><abstract>Artin and Coxeter groups are naturally occurring generalisations of the braid and symmetric groups respectively. However, unlike for Coxeter groups, many basic group theoretic questions remain unanswered for general Artin groups – most notably the K(\pi,1) -conjecture for Artin groups remains open except for certain special families of Artin groups. Recently, Artin groups have also appeared as groups acting on triangulated categories, where the associated spaces of Bridgeland’s stability conditions provide new realisations of the corresponding K(\pi,1) spaces. The aim of the workshop is to bring together experts and early career researchers from two seemingly different areas of research: (i) geometric and combinatorial group theory and topology, and (ii) triangulated categories and stability conditions, to explore their intersection via the K(\pi,1) -conjecture.</abstract><doi>10.4171/owr/2024/4</doi><orcidid>https://orcid.org/0000-0001-9257-077X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1660-8933
ispartof Oberwolfach reports, 2024-09, Vol.21 (1), p.203-234
issn 1660-8933
1660-8941
language eng
recordid cdi_crossref_primary_10_4171_owr_2024_4
source Alma/SFX Local Collection
title Mini-Worskhop: Artin Groups meet Triangulated Categories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mini-Worskhop:%20Artin%20Groups%20meet%20Triangulated%20Categories&rft.jtitle=Oberwolfach%20reports&rft.au=Boyd,%20Rachael&rft.date=2024-09-30&rft.volume=21&rft.issue=1&rft.spage=203&rft.epage=234&rft.pages=203-234&rft.issn=1660-8933&rft.eissn=1660-8941&rft_id=info:doi/10.4171/owr/2024/4&rft_dat=%3Ccrossref%3E10_4171_owr_2024_4%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true