Mini-Worskhop: Artin Groups meet Triangulated Categories
Artin and Coxeter groups are naturally occurring generalisations of the braid and symmetric groups respectively. However, unlike for Coxeter groups, many basic group theoretic questions remain unanswered for general Artin groups – most notably the K(\pi,1) -conjecture for Artin groups remains open e...
Gespeichert in:
Veröffentlicht in: | Oberwolfach reports 2024-09, Vol.21 (1), p.203-234 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | 1 |
container_start_page | 203 |
container_title | Oberwolfach reports |
container_volume | 21 |
creator | Boyd, Rachael Heng, Edmund Ozornova, Viktoriya |
description | Artin and Coxeter groups are naturally occurring generalisations of the braid and symmetric groups respectively. However, unlike for Coxeter groups, many basic group theoretic questions remain unanswered for general Artin groups – most notably the K(\pi,1) -conjecture for Artin groups remains open except for certain special families of Artin groups. Recently, Artin groups have also appeared as groups acting on triangulated categories, where the associated spaces of Bridgeland’s stability conditions provide new realisations of the corresponding K(\pi,1) spaces. The aim of the workshop is to bring together experts and early career researchers from two seemingly different areas of research: (i) geometric and combinatorial group theory and topology, and (ii) triangulated categories and stability conditions, to explore their intersection via the K(\pi,1) -conjecture. |
doi_str_mv | 10.4171/owr/2024/4 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_owr_2024_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_owr_2024_4</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_4171_owr_2024_43</originalsourceid><addsrcrecordid>eNqVzjsLwjAUBeAgCtbH4i_ILNQmTazVTYqPxa3gGIKmNWqbcm-L-O9tQdxdzjnDGT5CZpwtJF_xwL0gCFkoA9kjHo8i5sdryfu_LcSQjBDvjIlIyqVH4pMtrX92gI-bqzZ0C7Ut6QFcUyEtjKlpClaXefPUtbnSpM3cgTU4IYNMP9FMvz0m8_0uTY7-BRwimExVYAsNb8WZ6myqtanOpqT46_wB-TxAmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mini-Worskhop: Artin Groups meet Triangulated Categories</title><source>Alma/SFX Local Collection</source><creator>Boyd, Rachael ; Heng, Edmund ; Ozornova, Viktoriya</creator><creatorcontrib>Boyd, Rachael ; Heng, Edmund ; Ozornova, Viktoriya</creatorcontrib><description>Artin and Coxeter groups are naturally occurring generalisations of the braid and symmetric groups respectively. However, unlike for Coxeter groups, many basic group theoretic questions remain unanswered for general Artin groups – most notably the K(\pi,1) -conjecture for Artin groups remains open except for certain special families of Artin groups. Recently, Artin groups have also appeared as groups acting on triangulated categories, where the associated spaces of Bridgeland’s stability conditions provide new realisations of the corresponding K(\pi,1) spaces. The aim of the workshop is to bring together experts and early career researchers from two seemingly different areas of research: (i) geometric and combinatorial group theory and topology, and (ii) triangulated categories and stability conditions, to explore their intersection via the K(\pi,1) -conjecture.</description><identifier>ISSN: 1660-8933</identifier><identifier>EISSN: 1660-8941</identifier><identifier>DOI: 10.4171/owr/2024/4</identifier><language>eng</language><ispartof>Oberwolfach reports, 2024-09, Vol.21 (1), p.203-234</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9257-077X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Boyd, Rachael</creatorcontrib><creatorcontrib>Heng, Edmund</creatorcontrib><creatorcontrib>Ozornova, Viktoriya</creatorcontrib><title>Mini-Worskhop: Artin Groups meet Triangulated Categories</title><title>Oberwolfach reports</title><description>Artin and Coxeter groups are naturally occurring generalisations of the braid and symmetric groups respectively. However, unlike for Coxeter groups, many basic group theoretic questions remain unanswered for general Artin groups – most notably the K(\pi,1) -conjecture for Artin groups remains open except for certain special families of Artin groups. Recently, Artin groups have also appeared as groups acting on triangulated categories, where the associated spaces of Bridgeland’s stability conditions provide new realisations of the corresponding K(\pi,1) spaces. The aim of the workshop is to bring together experts and early career researchers from two seemingly different areas of research: (i) geometric and combinatorial group theory and topology, and (ii) triangulated categories and stability conditions, to explore their intersection via the K(\pi,1) -conjecture.</description><issn>1660-8933</issn><issn>1660-8941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVzjsLwjAUBeAgCtbH4i_ILNQmTazVTYqPxa3gGIKmNWqbcm-L-O9tQdxdzjnDGT5CZpwtJF_xwL0gCFkoA9kjHo8i5sdryfu_LcSQjBDvjIlIyqVH4pMtrX92gI-bqzZ0C7Ut6QFcUyEtjKlpClaXefPUtbnSpM3cgTU4IYNMP9FMvz0m8_0uTY7-BRwimExVYAsNb8WZ6myqtanOpqT46_wB-TxAmw</recordid><startdate>20240930</startdate><enddate>20240930</enddate><creator>Boyd, Rachael</creator><creator>Heng, Edmund</creator><creator>Ozornova, Viktoriya</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9257-077X</orcidid></search><sort><creationdate>20240930</creationdate><title>Mini-Worskhop: Artin Groups meet Triangulated Categories</title><author>Boyd, Rachael ; Heng, Edmund ; Ozornova, Viktoriya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_4171_owr_2024_43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyd, Rachael</creatorcontrib><creatorcontrib>Heng, Edmund</creatorcontrib><creatorcontrib>Ozornova, Viktoriya</creatorcontrib><collection>CrossRef</collection><jtitle>Oberwolfach reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyd, Rachael</au><au>Heng, Edmund</au><au>Ozornova, Viktoriya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mini-Worskhop: Artin Groups meet Triangulated Categories</atitle><jtitle>Oberwolfach reports</jtitle><date>2024-09-30</date><risdate>2024</risdate><volume>21</volume><issue>1</issue><spage>203</spage><epage>234</epage><pages>203-234</pages><issn>1660-8933</issn><eissn>1660-8941</eissn><abstract>Artin and Coxeter groups are naturally occurring generalisations of the braid and symmetric groups respectively. However, unlike for Coxeter groups, many basic group theoretic questions remain unanswered for general Artin groups – most notably the K(\pi,1) -conjecture for Artin groups remains open except for certain special families of Artin groups. Recently, Artin groups have also appeared as groups acting on triangulated categories, where the associated spaces of Bridgeland’s stability conditions provide new realisations of the corresponding K(\pi,1) spaces. The aim of the workshop is to bring together experts and early career researchers from two seemingly different areas of research: (i) geometric and combinatorial group theory and topology, and (ii) triangulated categories and stability conditions, to explore their intersection via the K(\pi,1) -conjecture.</abstract><doi>10.4171/owr/2024/4</doi><orcidid>https://orcid.org/0000-0001-9257-077X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-8933 |
ispartof | Oberwolfach reports, 2024-09, Vol.21 (1), p.203-234 |
issn | 1660-8933 1660-8941 |
language | eng |
recordid | cdi_crossref_primary_10_4171_owr_2024_4 |
source | Alma/SFX Local Collection |
title | Mini-Worskhop: Artin Groups meet Triangulated Categories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mini-Worskhop:%20Artin%20Groups%20meet%20Triangulated%20Categories&rft.jtitle=Oberwolfach%20reports&rft.au=Boyd,%20Rachael&rft.date=2024-09-30&rft.volume=21&rft.issue=1&rft.spage=203&rft.epage=234&rft.pages=203-234&rft.issn=1660-8933&rft.eissn=1660-8941&rft_id=info:doi/10.4171/owr/2024/4&rft_dat=%3Ccrossref%3E10_4171_owr_2024_4%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |