The Renormalization Group

The renormalization group was originally introduced as a multiscale approach to quantum field theory and the theory of critical phenomena, explaining in particular the universality observed e.g. in critical exponents. Over the years it has become a powerful tool in the mathematical analysis of syste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oberwolfach reports 2023-06, Vol.19 (3), p.1865-1925
Hauptverfasser: Bauerschmidt, Roland, Disertori, Margherita, Hollands, Stefan, Salmhofer, Manfred
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1925
container_issue 3
container_start_page 1865
container_title Oberwolfach reports
container_volume 19
creator Bauerschmidt, Roland
Disertori, Margherita
Hollands, Stefan
Salmhofer, Manfred
description The renormalization group was originally introduced as a multiscale approach to quantum field theory and the theory of critical phenomena, explaining in particular the universality observed e.g. in critical exponents. Over the years it has become a powerful tool in the mathematical analysis of systems with infinitely many interacting degrees of freedom. Its applications include quantum field theories, classical and quantum statistical mechanics, (stochastic) partial differential equations, operator theory, and probability theory. For some important problems, it is the only known tool for mathematical proofs. The last few years have seen further important developments, in particular in the application of the method to probabilistic questions, and to equilibrium and non-equilibrium quantum statistical mechanics. This workshop has given an account of the most important new developments in the last five years, including methodical progress, current applications, relations to other approaches, and identified new challenges that may be tackled in future work with the help of the renormalization group.
doi_str_mv 10.4171/owr/2022/33
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_owr_2022_33</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_owr_2022_33</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_4171_owr_2022_333</originalsourceid><addsrcrecordid>eNpjYBA2NNAzMTQ31M8vL9I3MjAy0jc2ZmLgNDQzM9C1sDQxZIGzjY05GLiKi7MMDIzNTExMORkkQzJSFYJS8_KLchNzMqsSSzLz8xTci_JLC3gYWNMSc4pTeaE0N4O2m2uIs4duclF-cXFRalp8QVFmbmJRZbyhQTzI9nig7fEg2-ONjY1JUw0Al-o1tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Renormalization Group</title><source>Alma/SFX Local Collection</source><creator>Bauerschmidt, Roland ; Disertori, Margherita ; Hollands, Stefan ; Salmhofer, Manfred</creator><creatorcontrib>Bauerschmidt, Roland ; Disertori, Margherita ; Hollands, Stefan ; Salmhofer, Manfred</creatorcontrib><description>The renormalization group was originally introduced as a multiscale approach to quantum field theory and the theory of critical phenomena, explaining in particular the universality observed e.g. in critical exponents. Over the years it has become a powerful tool in the mathematical analysis of systems with infinitely many interacting degrees of freedom. Its applications include quantum field theories, classical and quantum statistical mechanics, (stochastic) partial differential equations, operator theory, and probability theory. For some important problems, it is the only known tool for mathematical proofs. The last few years have seen further important developments, in particular in the application of the method to probabilistic questions, and to equilibrium and non-equilibrium quantum statistical mechanics. This workshop has given an account of the most important new developments in the last five years, including methodical progress, current applications, relations to other approaches, and identified new challenges that may be tackled in future work with the help of the renormalization group.</description><identifier>ISSN: 1660-8933</identifier><identifier>EISSN: 1660-8941</identifier><identifier>DOI: 10.4171/owr/2022/33</identifier><language>eng</language><ispartof>Oberwolfach reports, 2023-06, Vol.19 (3), p.1865-1925</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Bauerschmidt, Roland</creatorcontrib><creatorcontrib>Disertori, Margherita</creatorcontrib><creatorcontrib>Hollands, Stefan</creatorcontrib><creatorcontrib>Salmhofer, Manfred</creatorcontrib><title>The Renormalization Group</title><title>Oberwolfach reports</title><description>The renormalization group was originally introduced as a multiscale approach to quantum field theory and the theory of critical phenomena, explaining in particular the universality observed e.g. in critical exponents. Over the years it has become a powerful tool in the mathematical analysis of systems with infinitely many interacting degrees of freedom. Its applications include quantum field theories, classical and quantum statistical mechanics, (stochastic) partial differential equations, operator theory, and probability theory. For some important problems, it is the only known tool for mathematical proofs. The last few years have seen further important developments, in particular in the application of the method to probabilistic questions, and to equilibrium and non-equilibrium quantum statistical mechanics. This workshop has given an account of the most important new developments in the last five years, including methodical progress, current applications, relations to other approaches, and identified new challenges that may be tackled in future work with the help of the renormalization group.</description><issn>1660-8933</issn><issn>1660-8941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpjYBA2NNAzMTQ31M8vL9I3MjAy0jc2ZmLgNDQzM9C1sDQxZIGzjY05GLiKi7MMDIzNTExMORkkQzJSFYJS8_KLchNzMqsSSzLz8xTci_JLC3gYWNMSc4pTeaE0N4O2m2uIs4duclF-cXFRalp8QVFmbmJRZbyhQTzI9nig7fEg2-ONjY1JUw0Al-o1tw</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Bauerschmidt, Roland</creator><creator>Disertori, Margherita</creator><creator>Hollands, Stefan</creator><creator>Salmhofer, Manfred</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230613</creationdate><title>The Renormalization Group</title><author>Bauerschmidt, Roland ; Disertori, Margherita ; Hollands, Stefan ; Salmhofer, Manfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_4171_owr_2022_333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauerschmidt, Roland</creatorcontrib><creatorcontrib>Disertori, Margherita</creatorcontrib><creatorcontrib>Hollands, Stefan</creatorcontrib><creatorcontrib>Salmhofer, Manfred</creatorcontrib><collection>CrossRef</collection><jtitle>Oberwolfach reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauerschmidt, Roland</au><au>Disertori, Margherita</au><au>Hollands, Stefan</au><au>Salmhofer, Manfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Renormalization Group</atitle><jtitle>Oberwolfach reports</jtitle><date>2023-06-13</date><risdate>2023</risdate><volume>19</volume><issue>3</issue><spage>1865</spage><epage>1925</epage><pages>1865-1925</pages><issn>1660-8933</issn><eissn>1660-8941</eissn><abstract>The renormalization group was originally introduced as a multiscale approach to quantum field theory and the theory of critical phenomena, explaining in particular the universality observed e.g. in critical exponents. Over the years it has become a powerful tool in the mathematical analysis of systems with infinitely many interacting degrees of freedom. Its applications include quantum field theories, classical and quantum statistical mechanics, (stochastic) partial differential equations, operator theory, and probability theory. For some important problems, it is the only known tool for mathematical proofs. The last few years have seen further important developments, in particular in the application of the method to probabilistic questions, and to equilibrium and non-equilibrium quantum statistical mechanics. This workshop has given an account of the most important new developments in the last five years, including methodical progress, current applications, relations to other approaches, and identified new challenges that may be tackled in future work with the help of the renormalization group.</abstract><doi>10.4171/owr/2022/33</doi></addata></record>
fulltext fulltext
identifier ISSN: 1660-8933
ispartof Oberwolfach reports, 2023-06, Vol.19 (3), p.1865-1925
issn 1660-8933
1660-8941
language eng
recordid cdi_crossref_primary_10_4171_owr_2022_33
source Alma/SFX Local Collection
title The Renormalization Group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T11%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Renormalization%20Group&rft.jtitle=Oberwolfach%20reports&rft.au=Bauerschmidt,%20Roland&rft.date=2023-06-13&rft.volume=19&rft.issue=3&rft.spage=1865&rft.epage=1925&rft.pages=1865-1925&rft.issn=1660-8933&rft.eissn=1660-8941&rft_id=info:doi/10.4171/owr/2022/33&rft_dat=%3Ccrossref%3E10_4171_owr_2022_33%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true