The Harish-Chandra integral: An introduction with examples

This expository paper introduces the theory of Harish-Chandra integrals, a family of special functions that express the integral of an exponential function over the adjoint orbits of a compact Lie group. Originally studied in the context of harmonic analysis on Lie algebras, Harish-Chandra integrals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Enseignement mathématique 2021-11, Vol.67 (3), p.229-299
1. Verfasser: McSwiggen, Colin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 3
container_start_page 229
container_title Enseignement mathématique
container_volume 67
creator McSwiggen, Colin
description This expository paper introduces the theory of Harish-Chandra integrals, a family of special functions that express the integral of an exponential function over the adjoint orbits of a compact Lie group. Originally studied in the context of harmonic analysis on Lie algebras, Harish-Chandra integrals now have diverse applications in many areas of mathematics and physics. We review a number of these applications, present several different proofs of Harish- Chandra’s celebrated exact formula for the integrals, and give detailed derivations of the specific integral formulae for all compact classical groups. These notes are intended for mathematicians and physicists who are familiar with the basics of Lie groups and Lie algebras but who may not be specialists in representation theory or harmonic analysis.
doi_str_mv 10.4171/lem/1017
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_lem_1017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_lem_1017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c157t-890a0be60e709ca1911eecfc1e9b1fa4f7c0e01504da502ddd237cc20cedce9c3</originalsourceid><addsrcrecordid>eNotz81Kw0AUBeBBFAy14CNk6WbsvZNJJtNdCWqFgpu6DpM7NyaQnzITUd_eFl0dDgcOfELcIzxqNLgZeNwgoLkSicrASl0YdS0SAMxkmZf6Vqxj7Bs4b1oVYBOxPXac7l3oYyerzk0-uLSfFv4Ibtimu-lSwuw_aennKf3qly7lbzeeBo534qZ1Q-T1f67E-_PTsdrLw9vLa7U7SMLcLLK04KDhAtiAJYcWkZlaQrYNtk63hoABc9De5aC89yozRAqIPbGlbCUe_n4pzDEGbutT6EcXfmqE-sKuz-z6ws5-AfWQS0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Harish-Chandra integral: An introduction with examples</title><source>European Mathematical Society Publishing House</source><creator>McSwiggen, Colin</creator><creatorcontrib>McSwiggen, Colin</creatorcontrib><description>This expository paper introduces the theory of Harish-Chandra integrals, a family of special functions that express the integral of an exponential function over the adjoint orbits of a compact Lie group. Originally studied in the context of harmonic analysis on Lie algebras, Harish-Chandra integrals now have diverse applications in many areas of mathematics and physics. We review a number of these applications, present several different proofs of Harish- Chandra’s celebrated exact formula for the integrals, and give detailed derivations of the specific integral formulae for all compact classical groups. These notes are intended for mathematicians and physicists who are familiar with the basics of Lie groups and Lie algebras but who may not be specialists in representation theory or harmonic analysis.</description><identifier>ISSN: 0013-8584</identifier><identifier>EISSN: 2309-4672</identifier><identifier>DOI: 10.4171/lem/1017</identifier><language>eng</language><ispartof>Enseignement mathématique, 2021-11, Vol.67 (3), p.229-299</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c157t-890a0be60e709ca1911eecfc1e9b1fa4f7c0e01504da502ddd237cc20cedce9c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>McSwiggen, Colin</creatorcontrib><title>The Harish-Chandra integral: An introduction with examples</title><title>Enseignement mathématique</title><description>This expository paper introduces the theory of Harish-Chandra integrals, a family of special functions that express the integral of an exponential function over the adjoint orbits of a compact Lie group. Originally studied in the context of harmonic analysis on Lie algebras, Harish-Chandra integrals now have diverse applications in many areas of mathematics and physics. We review a number of these applications, present several different proofs of Harish- Chandra’s celebrated exact formula for the integrals, and give detailed derivations of the specific integral formulae for all compact classical groups. These notes are intended for mathematicians and physicists who are familiar with the basics of Lie groups and Lie algebras but who may not be specialists in representation theory or harmonic analysis.</description><issn>0013-8584</issn><issn>2309-4672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotz81Kw0AUBeBBFAy14CNk6WbsvZNJJtNdCWqFgpu6DpM7NyaQnzITUd_eFl0dDgcOfELcIzxqNLgZeNwgoLkSicrASl0YdS0SAMxkmZf6Vqxj7Bs4b1oVYBOxPXac7l3oYyerzk0-uLSfFv4Ibtimu-lSwuw_aennKf3qly7lbzeeBo534qZ1Q-T1f67E-_PTsdrLw9vLa7U7SMLcLLK04KDhAtiAJYcWkZlaQrYNtk63hoABc9De5aC89yozRAqIPbGlbCUe_n4pzDEGbutT6EcXfmqE-sKuz-z6ws5-AfWQS0w</recordid><startdate>20211122</startdate><enddate>20211122</enddate><creator>McSwiggen, Colin</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211122</creationdate><title>The Harish-Chandra integral: An introduction with examples</title><author>McSwiggen, Colin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c157t-890a0be60e709ca1911eecfc1e9b1fa4f7c0e01504da502ddd237cc20cedce9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McSwiggen, Colin</creatorcontrib><collection>CrossRef</collection><jtitle>Enseignement mathématique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McSwiggen, Colin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Harish-Chandra integral: An introduction with examples</atitle><jtitle>Enseignement mathématique</jtitle><date>2021-11-22</date><risdate>2021</risdate><volume>67</volume><issue>3</issue><spage>229</spage><epage>299</epage><pages>229-299</pages><issn>0013-8584</issn><eissn>2309-4672</eissn><abstract>This expository paper introduces the theory of Harish-Chandra integrals, a family of special functions that express the integral of an exponential function over the adjoint orbits of a compact Lie group. Originally studied in the context of harmonic analysis on Lie algebras, Harish-Chandra integrals now have diverse applications in many areas of mathematics and physics. We review a number of these applications, present several different proofs of Harish- Chandra’s celebrated exact formula for the integrals, and give detailed derivations of the specific integral formulae for all compact classical groups. These notes are intended for mathematicians and physicists who are familiar with the basics of Lie groups and Lie algebras but who may not be specialists in representation theory or harmonic analysis.</abstract><doi>10.4171/lem/1017</doi><tpages>71</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-8584
ispartof Enseignement mathématique, 2021-11, Vol.67 (3), p.229-299
issn 0013-8584
2309-4672
language eng
recordid cdi_crossref_primary_10_4171_lem_1017
source European Mathematical Society Publishing House
title The Harish-Chandra integral: An introduction with examples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A33%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Harish-Chandra%20integral:%20An%20introduction%20with%20examples&rft.jtitle=Enseignement%20math%C3%A9matique&rft.au=McSwiggen,%20Colin&rft.date=2021-11-22&rft.volume=67&rft.issue=3&rft.spage=229&rft.epage=299&rft.pages=229-299&rft.issn=0013-8584&rft.eissn=2309-4672&rft_id=info:doi/10.4171/lem/1017&rft_dat=%3Ccrossref%3E10_4171_lem_1017%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true