Elements of uniformly bounded word-length in groups

We study a characteristic subgroup of finitely generated groups, consisting of elements with uniform upper bound for word-lengths. For a group G , we denote this subgroup by G_\mathrm{bound} . We give sufficient criteria for triviality and finiteness of G_\mathrm{bound} . We prove that if G is virtu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Enseignement mathématique 2021-10, Vol.67 (1), p.45-61
1. Verfasser: Amirou, Yanis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue 1
container_start_page 45
container_title Enseignement mathématique
container_volume 67
creator Amirou, Yanis
description We study a characteristic subgroup of finitely generated groups, consisting of elements with uniform upper bound for word-lengths. For a group G , we denote this subgroup by G_\mathrm{bound} . We give sufficient criteria for triviality and finiteness of G_\mathrm{bound} . We prove that if G is virtually abelian then G_\mathrm{bound} is finite. In contrast with numerous examples where G_\mathrm{bound} is trivial, we show that for every finite group A , there exists an infinite group G with G_\mathrm{bound}=A . This group G can be chosen among torsion groups. We also study the group G_\mathrm{bound}(d) of elements with uniformly bounded word-lengths for generating sets of cardinality less than d .
doi_str_mv 10.4171/lem/1002
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_lem_1002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_lem_1002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c118t-c5ce3c11088451ce9e86284a4421941e8c69ed5777d48e4007a29b346c3c09d93</originalsourceid><addsrcrecordid>eNotj0FLxDAUhIMouKwL_oQcvcR9SV6b5CjLqgsLXvRc2uR1LbTNkrTI_nu76GkGhhnmY-xRwjNKI7c9DVsJoG7YSmlwAkujbtkKQGphC4v3bJNz18CSoSrBrZjeLx0ap8xjy-exa2Ma-gtv4jwGCvwnpiB6Gk_TN-9GfkpxPucHdtfWfabNv67Z1-v-c_cujh9vh93LUXgp7SR84UkvFqzFQnpyZEtlsUZU0qEk60tHoTDGBLSEAKZWrtFYeu3BBafX7Olv16eYc6K2OqduqNOlklBdeavle3Xl1b9kQEcO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Elements of uniformly bounded word-length in groups</title><source>European Mathematical Society Publishing House</source><creator>Amirou, Yanis</creator><creatorcontrib>Amirou, Yanis</creatorcontrib><description>We study a characteristic subgroup of finitely generated groups, consisting of elements with uniform upper bound for word-lengths. For a group G , we denote this subgroup by G_\mathrm{bound} . We give sufficient criteria for triviality and finiteness of G_\mathrm{bound} . We prove that if G is virtually abelian then G_\mathrm{bound} is finite. In contrast with numerous examples where G_\mathrm{bound} is trivial, we show that for every finite group A , there exists an infinite group G with G_\mathrm{bound}=A . This group G can be chosen among torsion groups. We also study the group G_\mathrm{bound}(d) of elements with uniformly bounded word-lengths for generating sets of cardinality less than d .</description><identifier>ISSN: 0013-8584</identifier><identifier>EISSN: 2309-4672</identifier><identifier>DOI: 10.4171/lem/1002</identifier><language>eng</language><ispartof>Enseignement mathématique, 2021-10, Vol.67 (1), p.45-61</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Amirou, Yanis</creatorcontrib><title>Elements of uniformly bounded word-length in groups</title><title>Enseignement mathématique</title><description>We study a characteristic subgroup of finitely generated groups, consisting of elements with uniform upper bound for word-lengths. For a group G , we denote this subgroup by G_\mathrm{bound} . We give sufficient criteria for triviality and finiteness of G_\mathrm{bound} . We prove that if G is virtually abelian then G_\mathrm{bound} is finite. In contrast with numerous examples where G_\mathrm{bound} is trivial, we show that for every finite group A , there exists an infinite group G with G_\mathrm{bound}=A . This group G can be chosen among torsion groups. We also study the group G_\mathrm{bound}(d) of elements with uniformly bounded word-lengths for generating sets of cardinality less than d .</description><issn>0013-8584</issn><issn>2309-4672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotj0FLxDAUhIMouKwL_oQcvcR9SV6b5CjLqgsLXvRc2uR1LbTNkrTI_nu76GkGhhnmY-xRwjNKI7c9DVsJoG7YSmlwAkujbtkKQGphC4v3bJNz18CSoSrBrZjeLx0ap8xjy-exa2Ma-gtv4jwGCvwnpiB6Gk_TN-9GfkpxPucHdtfWfabNv67Z1-v-c_cujh9vh93LUXgp7SR84UkvFqzFQnpyZEtlsUZU0qEk60tHoTDGBLSEAKZWrtFYeu3BBafX7Olv16eYc6K2OqduqNOlklBdeavle3Xl1b9kQEcO</recordid><startdate>20211011</startdate><enddate>20211011</enddate><creator>Amirou, Yanis</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211011</creationdate><title>Elements of uniformly bounded word-length in groups</title><author>Amirou, Yanis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c118t-c5ce3c11088451ce9e86284a4421941e8c69ed5777d48e4007a29b346c3c09d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amirou, Yanis</creatorcontrib><collection>CrossRef</collection><jtitle>Enseignement mathématique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amirou, Yanis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elements of uniformly bounded word-length in groups</atitle><jtitle>Enseignement mathématique</jtitle><date>2021-10-11</date><risdate>2021</risdate><volume>67</volume><issue>1</issue><spage>45</spage><epage>61</epage><pages>45-61</pages><issn>0013-8584</issn><eissn>2309-4672</eissn><abstract>We study a characteristic subgroup of finitely generated groups, consisting of elements with uniform upper bound for word-lengths. For a group G , we denote this subgroup by G_\mathrm{bound} . We give sufficient criteria for triviality and finiteness of G_\mathrm{bound} . We prove that if G is virtually abelian then G_\mathrm{bound} is finite. In contrast with numerous examples where G_\mathrm{bound} is trivial, we show that for every finite group A , there exists an infinite group G with G_\mathrm{bound}=A . This group G can be chosen among torsion groups. We also study the group G_\mathrm{bound}(d) of elements with uniformly bounded word-lengths for generating sets of cardinality less than d .</abstract><doi>10.4171/lem/1002</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-8584
ispartof Enseignement mathématique, 2021-10, Vol.67 (1), p.45-61
issn 0013-8584
2309-4672
language eng
recordid cdi_crossref_primary_10_4171_lem_1002
source European Mathematical Society Publishing House
title Elements of uniformly bounded word-length in groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elements%20of%20uniformly%20bounded%20word-length%20in%20groups&rft.jtitle=Enseignement%20math%C3%A9matique&rft.au=Amirou,%20Yanis&rft.date=2021-10-11&rft.volume=67&rft.issue=1&rft.spage=45&rft.epage=61&rft.pages=45-61&rft.issn=0013-8584&rft.eissn=2309-4672&rft_id=info:doi/10.4171/lem/1002&rft_dat=%3Ccrossref%3E10_4171_lem_1002%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true