Elements of uniformly bounded word-length in groups

We study a characteristic subgroup of finitely generated groups, consisting of elements with uniform upper bound for word-lengths. For a group G , we denote this subgroup by G_\mathrm{bound} . We give sufficient criteria for triviality and finiteness of G_\mathrm{bound} . We prove that if G is virtu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Enseignement mathématique 2021-10, Vol.67 (1), p.45-61
1. Verfasser: Amirou, Yanis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a characteristic subgroup of finitely generated groups, consisting of elements with uniform upper bound for word-lengths. For a group G , we denote this subgroup by G_\mathrm{bound} . We give sufficient criteria for triviality and finiteness of G_\mathrm{bound} . We prove that if G is virtually abelian then G_\mathrm{bound} is finite. In contrast with numerous examples where G_\mathrm{bound} is trivial, we show that for every finite group A , there exists an infinite group G with G_\mathrm{bound}=A . This group G can be chosen among torsion groups. We also study the group G_\mathrm{bound}(d) of elements with uniformly bounded word-lengths for generating sets of cardinality less than d .
ISSN:0013-8584
2309-4672
DOI:10.4171/lem/1002