Spectral properties of Schrödinger operators with locally $H^{-1}$ potentials
We study half-line Schrödinger operators with locally H^{-1} potentials. In the first part, we focus on a general spectral theoretic framework for such operators, including a Last–Simon-type description of the absolutely continuous spectrum and sufficient conditions for different spectral types. In...
Gespeichert in:
Veröffentlicht in: | Journal of spectral theory 2024-05, Vol.14 (1), p.59-120 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | 1 |
container_start_page | 59 |
container_title | Journal of spectral theory |
container_volume | 14 |
creator | Lukić, Milivoje Sukhtaiev, Selim Wang, Xingya |
description | We study half-line Schrödinger operators with locally H^{-1} potentials. In the first part, we focus on a general spectral theoretic framework for such operators, including a Last–Simon-type description of the absolutely continuous spectrum and sufficient conditions for different spectral types. In the second part, we focus on potentials which are decaying in a local H^{-1} sense; we establish a spectral transition between short-range and long-range potentials and an \ell^{2} spectral transition for sparse singular potentials. The regularization procedure used to handle distributional potentials is also well suited for controlling rapid oscillations in the potential; thus, even within the class of smooth potentials, our results apply in situations which would not classically be considered decaying or even bounded. |
doi_str_mv | 10.4171/jst/490 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jst_490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jst_490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1350-be9f117fac0ad8a66dce090dfb37f8fbae19af571a1c7eb67358476f0672c2f43</originalsourceid><addsrcrecordid>eNo1kMFKAzEURYMoWGrxF7IouBr7XpNJZpZS1ApFF1Vw5ZDJ5NkpYzMkASnib_kD_phT1NW93AN3cRg7R7iUqHG2jWkmSzhiI1RKZiBBHP93UT6fskmMWwAYFj2wEbtf986mYDreB9-7kFoXuSe-tpvw_dW0u1cX-AGY5EPk723a8M5b03V7Pl2-fGT4OeW9T26XWtPFM3ZCQ7jJX47Z083142KZrR5u7xZXq8yiyCGrXUmImowF0xRGqcY6KKGhWmgqqDYOS0O5RoNWu1ppkRdSKwKl53ZOUozZxe-vDT7G4KjqQ_tmwr5CqA4mqsFENZgQP3caUvE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectral properties of Schrödinger operators with locally $H^{-1}$ potentials</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lukić, Milivoje ; Sukhtaiev, Selim ; Wang, Xingya</creator><creatorcontrib>Lukić, Milivoje ; Sukhtaiev, Selim ; Wang, Xingya</creatorcontrib><description>We study half-line Schrödinger operators with locally H^{-1} potentials. In the first part, we focus on a general spectral theoretic framework for such operators, including a Last–Simon-type description of the absolutely continuous spectrum and sufficient conditions for different spectral types. In the second part, we focus on potentials which are decaying in a local H^{-1} sense; we establish a spectral transition between short-range and long-range potentials and an \ell^{2} spectral transition for sparse singular potentials. The regularization procedure used to handle distributional potentials is also well suited for controlling rapid oscillations in the potential; thus, even within the class of smooth potentials, our results apply in situations which would not classically be considered decaying or even bounded.</description><identifier>ISSN: 1664-039X</identifier><identifier>EISSN: 1664-0403</identifier><identifier>DOI: 10.4171/jst/490</identifier><language>eng</language><ispartof>Journal of spectral theory, 2024-05, Vol.14 (1), p.59-120</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0512-2448 ; 0000-0003-2971-9193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Lukić, Milivoje</creatorcontrib><creatorcontrib>Sukhtaiev, Selim</creatorcontrib><creatorcontrib>Wang, Xingya</creatorcontrib><title>Spectral properties of Schrödinger operators with locally $H^{-1}$ potentials</title><title>Journal of spectral theory</title><description>We study half-line Schrödinger operators with locally H^{-1} potentials. In the first part, we focus on a general spectral theoretic framework for such operators, including a Last–Simon-type description of the absolutely continuous spectrum and sufficient conditions for different spectral types. In the second part, we focus on potentials which are decaying in a local H^{-1} sense; we establish a spectral transition between short-range and long-range potentials and an \ell^{2} spectral transition for sparse singular potentials. The regularization procedure used to handle distributional potentials is also well suited for controlling rapid oscillations in the potential; thus, even within the class of smooth potentials, our results apply in situations which would not classically be considered decaying or even bounded.</description><issn>1664-039X</issn><issn>1664-0403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1kMFKAzEURYMoWGrxF7IouBr7XpNJZpZS1ApFF1Vw5ZDJ5NkpYzMkASnib_kD_phT1NW93AN3cRg7R7iUqHG2jWkmSzhiI1RKZiBBHP93UT6fskmMWwAYFj2wEbtf986mYDreB9-7kFoXuSe-tpvw_dW0u1cX-AGY5EPk723a8M5b03V7Pl2-fGT4OeW9T26XWtPFM3ZCQ7jJX47Z083142KZrR5u7xZXq8yiyCGrXUmImowF0xRGqcY6KKGhWmgqqDYOS0O5RoNWu1ppkRdSKwKl53ZOUozZxe-vDT7G4KjqQ_tmwr5CqA4mqsFENZgQP3caUvE</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>Lukić, Milivoje</creator><creator>Sukhtaiev, Selim</creator><creator>Wang, Xingya</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0512-2448</orcidid><orcidid>https://orcid.org/0000-0003-2971-9193</orcidid></search><sort><creationdate>20240503</creationdate><title>Spectral properties of Schrödinger operators with locally $H^{-1}$ potentials</title><author>Lukić, Milivoje ; Sukhtaiev, Selim ; Wang, Xingya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1350-be9f117fac0ad8a66dce090dfb37f8fbae19af571a1c7eb67358476f0672c2f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lukić, Milivoje</creatorcontrib><creatorcontrib>Sukhtaiev, Selim</creatorcontrib><creatorcontrib>Wang, Xingya</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of spectral theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lukić, Milivoje</au><au>Sukhtaiev, Selim</au><au>Wang, Xingya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral properties of Schrödinger operators with locally $H^{-1}$ potentials</atitle><jtitle>Journal of spectral theory</jtitle><date>2024-05-03</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>59</spage><epage>120</epage><pages>59-120</pages><issn>1664-039X</issn><eissn>1664-0403</eissn><abstract>We study half-line Schrödinger operators with locally H^{-1} potentials. In the first part, we focus on a general spectral theoretic framework for such operators, including a Last–Simon-type description of the absolutely continuous spectrum and sufficient conditions for different spectral types. In the second part, we focus on potentials which are decaying in a local H^{-1} sense; we establish a spectral transition between short-range and long-range potentials and an \ell^{2} spectral transition for sparse singular potentials. The regularization procedure used to handle distributional potentials is also well suited for controlling rapid oscillations in the potential; thus, even within the class of smooth potentials, our results apply in situations which would not classically be considered decaying or even bounded.</abstract><doi>10.4171/jst/490</doi><tpages>62</tpages><orcidid>https://orcid.org/0000-0003-0512-2448</orcidid><orcidid>https://orcid.org/0000-0003-2971-9193</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-039X |
ispartof | Journal of spectral theory, 2024-05, Vol.14 (1), p.59-120 |
issn | 1664-039X 1664-0403 |
language | eng |
recordid | cdi_crossref_primary_10_4171_jst_490 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | Spectral properties of Schrödinger operators with locally $H^{-1}$ potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20properties%20of%20Schr%C3%B6dinger%20operators%20with%20locally%20$H%5E%7B-1%7D$%20potentials&rft.jtitle=Journal%20of%20spectral%20theory&rft.au=Luki%C4%87,%20Milivoje&rft.date=2024-05-03&rft.volume=14&rft.issue=1&rft.spage=59&rft.epage=120&rft.pages=59-120&rft.issn=1664-039X&rft.eissn=1664-0403&rft_id=info:doi/10.4171/jst/490&rft_dat=%3Ccrossref%3E10_4171_jst_490%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |