Spectral triples for noncommutative solenoids and a Wiener’s lemma

In this paper, we construct odd finitely summable spectral triples based on length functions of bounded doubling on noncommutative solenoids. Our spectral triples induce a Leibniz Lip-norm on the state spaces of the noncommutative solenoids, giving them the structure of Leibniz quantum compact metri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of noncommutative geometry 2024-03, Vol.18 (4), p.1415-1452
Hauptverfasser: Farsi, Carla, Landry, Therese, Larsen, Nadia S., Packer, Judith
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1452
container_issue 4
container_start_page 1415
container_title Journal of noncommutative geometry
container_volume 18
creator Farsi, Carla
Landry, Therese
Larsen, Nadia S.
Packer, Judith
description In this paper, we construct odd finitely summable spectral triples based on length functions of bounded doubling on noncommutative solenoids. Our spectral triples induce a Leibniz Lip-norm on the state spaces of the noncommutative solenoids, giving them the structure of Leibniz quantum compact metric spaces. By applying methods of R. Floricel and A. Ghorbanpour, we also show that our odd spectral triples on noncommutative solenoids can be considered as inductive limits of spectral triples on rotation algebras. In the final section, we prove a noncommutative version of Wiener’s lemma and show that our odd spectral triples can be defined to have an associated smooth dense subalgebra which is stable under the holomorphic functional calculus, thus answering a question of B. Long and W. Wu. The construction of the smooth subalgebra also extends to the case of nilpotent discrete groups.
doi_str_mv 10.4171/jncg/557
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jncg_557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jncg_557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c152t-d92827d95d353dbbd6257fdb59dfe637e2586cb3589554b9092bc68a4c5fe2693</originalsourceid><addsrcrecordid>eNo9z0lKA0EYhuFCFIxR8Ai1dNOmhv5rWEqIAwRcqLhsapQO3VWhqhXceQ13nsWjeBINiqvvXX3wIHRKyXlLJV1skntaAMg9NKNC0EZoQfb_G9ghOqp1Qwi0SqoZWt1tg5uKGfBU-u0QKo654JSTy-P4PJmpfwm45iGk3PuKTfLYfH489iGF8vX2XvEQxtEco4NohhpO_naOHi5X98vrZn17dbO8WDeOApsar5li0mvwHLi31gsGMnoL2scguAwMlHCWg9IArdVEM-uEMq2DGJjQfI7Ofn9dybWWELtt6UdTXjtKuh2_2_G7Hz7_BrGUUE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectral triples for noncommutative solenoids and a Wiener’s lemma</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Farsi, Carla ; Landry, Therese ; Larsen, Nadia S. ; Packer, Judith</creator><creatorcontrib>Farsi, Carla ; Landry, Therese ; Larsen, Nadia S. ; Packer, Judith</creatorcontrib><description>In this paper, we construct odd finitely summable spectral triples based on length functions of bounded doubling on noncommutative solenoids. Our spectral triples induce a Leibniz Lip-norm on the state spaces of the noncommutative solenoids, giving them the structure of Leibniz quantum compact metric spaces. By applying methods of R. Floricel and A. Ghorbanpour, we also show that our odd spectral triples on noncommutative solenoids can be considered as inductive limits of spectral triples on rotation algebras. In the final section, we prove a noncommutative version of Wiener’s lemma and show that our odd spectral triples can be defined to have an associated smooth dense subalgebra which is stable under the holomorphic functional calculus, thus answering a question of B. Long and W. Wu. The construction of the smooth subalgebra also extends to the case of nilpotent discrete groups.</description><identifier>ISSN: 1661-6952</identifier><identifier>EISSN: 1661-6960</identifier><identifier>DOI: 10.4171/jncg/557</identifier><language>eng</language><ispartof>Journal of noncommutative geometry, 2024-03, Vol.18 (4), p.1415-1452</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9761-7212 ; 0000-0002-0690-2553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Farsi, Carla</creatorcontrib><creatorcontrib>Landry, Therese</creatorcontrib><creatorcontrib>Larsen, Nadia S.</creatorcontrib><creatorcontrib>Packer, Judith</creatorcontrib><title>Spectral triples for noncommutative solenoids and a Wiener’s lemma</title><title>Journal of noncommutative geometry</title><description>In this paper, we construct odd finitely summable spectral triples based on length functions of bounded doubling on noncommutative solenoids. Our spectral triples induce a Leibniz Lip-norm on the state spaces of the noncommutative solenoids, giving them the structure of Leibniz quantum compact metric spaces. By applying methods of R. Floricel and A. Ghorbanpour, we also show that our odd spectral triples on noncommutative solenoids can be considered as inductive limits of spectral triples on rotation algebras. In the final section, we prove a noncommutative version of Wiener’s lemma and show that our odd spectral triples can be defined to have an associated smooth dense subalgebra which is stable under the holomorphic functional calculus, thus answering a question of B. Long and W. Wu. The construction of the smooth subalgebra also extends to the case of nilpotent discrete groups.</description><issn>1661-6952</issn><issn>1661-6960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9z0lKA0EYhuFCFIxR8Ai1dNOmhv5rWEqIAwRcqLhsapQO3VWhqhXceQ13nsWjeBINiqvvXX3wIHRKyXlLJV1skntaAMg9NKNC0EZoQfb_G9ghOqp1Qwi0SqoZWt1tg5uKGfBU-u0QKo654JSTy-P4PJmpfwm45iGk3PuKTfLYfH489iGF8vX2XvEQxtEco4NohhpO_naOHi5X98vrZn17dbO8WDeOApsar5li0mvwHLi31gsGMnoL2scguAwMlHCWg9IArdVEM-uEMq2DGJjQfI7Ofn9dybWWELtt6UdTXjtKuh2_2_G7Hz7_BrGUUE8</recordid><startdate>20240304</startdate><enddate>20240304</enddate><creator>Farsi, Carla</creator><creator>Landry, Therese</creator><creator>Larsen, Nadia S.</creator><creator>Packer, Judith</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9761-7212</orcidid><orcidid>https://orcid.org/0000-0002-0690-2553</orcidid></search><sort><creationdate>20240304</creationdate><title>Spectral triples for noncommutative solenoids and a Wiener’s lemma</title><author>Farsi, Carla ; Landry, Therese ; Larsen, Nadia S. ; Packer, Judith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c152t-d92827d95d353dbbd6257fdb59dfe637e2586cb3589554b9092bc68a4c5fe2693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farsi, Carla</creatorcontrib><creatorcontrib>Landry, Therese</creatorcontrib><creatorcontrib>Larsen, Nadia S.</creatorcontrib><creatorcontrib>Packer, Judith</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of noncommutative geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farsi, Carla</au><au>Landry, Therese</au><au>Larsen, Nadia S.</au><au>Packer, Judith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral triples for noncommutative solenoids and a Wiener’s lemma</atitle><jtitle>Journal of noncommutative geometry</jtitle><date>2024-03-04</date><risdate>2024</risdate><volume>18</volume><issue>4</issue><spage>1415</spage><epage>1452</epage><pages>1415-1452</pages><issn>1661-6952</issn><eissn>1661-6960</eissn><abstract>In this paper, we construct odd finitely summable spectral triples based on length functions of bounded doubling on noncommutative solenoids. Our spectral triples induce a Leibniz Lip-norm on the state spaces of the noncommutative solenoids, giving them the structure of Leibniz quantum compact metric spaces. By applying methods of R. Floricel and A. Ghorbanpour, we also show that our odd spectral triples on noncommutative solenoids can be considered as inductive limits of spectral triples on rotation algebras. In the final section, we prove a noncommutative version of Wiener’s lemma and show that our odd spectral triples can be defined to have an associated smooth dense subalgebra which is stable under the holomorphic functional calculus, thus answering a question of B. Long and W. Wu. The construction of the smooth subalgebra also extends to the case of nilpotent discrete groups.</abstract><doi>10.4171/jncg/557</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0002-9761-7212</orcidid><orcidid>https://orcid.org/0000-0002-0690-2553</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1661-6952
ispartof Journal of noncommutative geometry, 2024-03, Vol.18 (4), p.1415-1452
issn 1661-6952
1661-6960
language eng
recordid cdi_crossref_primary_10_4171_jncg_557
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Spectral triples for noncommutative solenoids and a Wiener’s lemma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20triples%20for%20noncommutative%20solenoids%20and%20a%C2%A0Wiener%E2%80%99s%20lemma&rft.jtitle=Journal%20of%20noncommutative%20geometry&rft.au=Farsi,%20Carla&rft.date=2024-03-04&rft.volume=18&rft.issue=4&rft.spage=1415&rft.epage=1452&rft.pages=1415-1452&rft.issn=1661-6952&rft.eissn=1661-6960&rft_id=info:doi/10.4171/jncg/557&rft_dat=%3Ccrossref%3E10_4171_jncg_557%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true