Relative Poisson bialgebras and Frobenius Jacobi algebras

Jacobi algebras, as the algebraic counterparts of Jacobi manifolds, are exactly the unital relative Poisson algebras. The direct approach of constructing Frobenius Jacobi algebras in terms of Manin triples is not available due to the existence of the units, and hence alternatively we replace it by s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of noncommutative geometry 2024-01, Vol.18 (3), p.995-1039
Hauptverfasser: Liu, Guilai, Bai, Chengming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1039
container_issue 3
container_start_page 995
container_title Journal of noncommutative geometry
container_volume 18
creator Liu, Guilai
Bai, Chengming
description Jacobi algebras, as the algebraic counterparts of Jacobi manifolds, are exactly the unital relative Poisson algebras. The direct approach of constructing Frobenius Jacobi algebras in terms of Manin triples is not available due to the existence of the units, and hence alternatively we replace it by studying Manin triples of relative Poisson algebras. Such structures are equivalent to certain bialgebra structures, namely, relative Poisson bialgebras. The study of coboundary cases leads to the introduction of the relative Poisson Yang–Baxter equation (RPYBE). Antisymmetric solutions of the RPYBE give coboundary relative Poisson bialgebras. The notions of \mathcal{O} -operators of relative Poisson algebras and relative pre-Poisson algebras are introduced to give antisymmetric solutions of the RPYBE. A direct application is that relative Poisson bialgebras can be used to construct Frobenius Jacobi algebras, and in particular, there is a construction of Frobenius Jacobi algebras from relative pre-Poisson algebras.
doi_str_mv 10.4171/jncg/546
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jncg_546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jncg_546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c152t-e913534e9169d46e9c1c40ae16a982355702e20931d7067a1af9da1bf1b13baf3</originalsourceid><addsrcrecordid>eNo9j81KAzEYRYMoWKvgI2TpZmy-yd9kKcVapdAiug5fMklJGSeSVMG3t8Wf1blw4cAh5BrYrQANs93otzMp1AmZgFLQKKPY6f-W7Tm5qHXHmBSd7ibEPIcB9-kz0E1OteaRuoTDNriCleLY00XJLozpo9In9Nkl-vdekrOIQw1Xv5yS18X9y3zZrNYPj_O7VeNBtvsmGOCSiwOU6YUKxoMXDAMoNF3LpdSsDS0zHHrNlEbAaHoEF8EBdxj5lNz8eH3JtZYQ7XtJb1i-LDB7TLbHZHtI5t_D70kk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Relative Poisson bialgebras and Frobenius Jacobi algebras</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Liu, Guilai ; Bai, Chengming</creator><creatorcontrib>Liu, Guilai ; Bai, Chengming</creatorcontrib><description>Jacobi algebras, as the algebraic counterparts of Jacobi manifolds, are exactly the unital relative Poisson algebras. The direct approach of constructing Frobenius Jacobi algebras in terms of Manin triples is not available due to the existence of the units, and hence alternatively we replace it by studying Manin triples of relative Poisson algebras. Such structures are equivalent to certain bialgebra structures, namely, relative Poisson bialgebras. The study of coboundary cases leads to the introduction of the relative Poisson Yang–Baxter equation (RPYBE). Antisymmetric solutions of the RPYBE give coboundary relative Poisson bialgebras. The notions of \mathcal{O} -operators of relative Poisson algebras and relative pre-Poisson algebras are introduced to give antisymmetric solutions of the RPYBE. A direct application is that relative Poisson bialgebras can be used to construct Frobenius Jacobi algebras, and in particular, there is a construction of Frobenius Jacobi algebras from relative pre-Poisson algebras.</description><identifier>ISSN: 1661-6952</identifier><identifier>EISSN: 1661-6960</identifier><identifier>DOI: 10.4171/jncg/546</identifier><language>eng</language><ispartof>Journal of noncommutative geometry, 2024-01, Vol.18 (3), p.995-1039</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0005-5876-3486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Guilai</creatorcontrib><creatorcontrib>Bai, Chengming</creatorcontrib><title>Relative Poisson bialgebras and Frobenius Jacobi algebras</title><title>Journal of noncommutative geometry</title><description>Jacobi algebras, as the algebraic counterparts of Jacobi manifolds, are exactly the unital relative Poisson algebras. The direct approach of constructing Frobenius Jacobi algebras in terms of Manin triples is not available due to the existence of the units, and hence alternatively we replace it by studying Manin triples of relative Poisson algebras. Such structures are equivalent to certain bialgebra structures, namely, relative Poisson bialgebras. The study of coboundary cases leads to the introduction of the relative Poisson Yang–Baxter equation (RPYBE). Antisymmetric solutions of the RPYBE give coboundary relative Poisson bialgebras. The notions of \mathcal{O} -operators of relative Poisson algebras and relative pre-Poisson algebras are introduced to give antisymmetric solutions of the RPYBE. A direct application is that relative Poisson bialgebras can be used to construct Frobenius Jacobi algebras, and in particular, there is a construction of Frobenius Jacobi algebras from relative pre-Poisson algebras.</description><issn>1661-6952</issn><issn>1661-6960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9j81KAzEYRYMoWKvgI2TpZmy-yd9kKcVapdAiug5fMklJGSeSVMG3t8Wf1blw4cAh5BrYrQANs93otzMp1AmZgFLQKKPY6f-W7Tm5qHXHmBSd7ibEPIcB9-kz0E1OteaRuoTDNriCleLY00XJLozpo9In9Nkl-vdekrOIQw1Xv5yS18X9y3zZrNYPj_O7VeNBtvsmGOCSiwOU6YUKxoMXDAMoNF3LpdSsDS0zHHrNlEbAaHoEF8EBdxj5lNz8eH3JtZYQ7XtJb1i-LDB7TLbHZHtI5t_D70kk</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Liu, Guilai</creator><creator>Bai, Chengming</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-5876-3486</orcidid></search><sort><creationdate>20240101</creationdate><title>Relative Poisson bialgebras and Frobenius Jacobi algebras</title><author>Liu, Guilai ; Bai, Chengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c152t-e913534e9169d46e9c1c40ae16a982355702e20931d7067a1af9da1bf1b13baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guilai</creatorcontrib><creatorcontrib>Bai, Chengming</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of noncommutative geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guilai</au><au>Bai, Chengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative Poisson bialgebras and Frobenius Jacobi algebras</atitle><jtitle>Journal of noncommutative geometry</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>18</volume><issue>3</issue><spage>995</spage><epage>1039</epage><pages>995-1039</pages><issn>1661-6952</issn><eissn>1661-6960</eissn><abstract>Jacobi algebras, as the algebraic counterparts of Jacobi manifolds, are exactly the unital relative Poisson algebras. The direct approach of constructing Frobenius Jacobi algebras in terms of Manin triples is not available due to the existence of the units, and hence alternatively we replace it by studying Manin triples of relative Poisson algebras. Such structures are equivalent to certain bialgebra structures, namely, relative Poisson bialgebras. The study of coboundary cases leads to the introduction of the relative Poisson Yang–Baxter equation (RPYBE). Antisymmetric solutions of the RPYBE give coboundary relative Poisson bialgebras. The notions of \mathcal{O} -operators of relative Poisson algebras and relative pre-Poisson algebras are introduced to give antisymmetric solutions of the RPYBE. A direct application is that relative Poisson bialgebras can be used to construct Frobenius Jacobi algebras, and in particular, there is a construction of Frobenius Jacobi algebras from relative pre-Poisson algebras.</abstract><doi>10.4171/jncg/546</doi><tpages>45</tpages><orcidid>https://orcid.org/0009-0005-5876-3486</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1661-6952
ispartof Journal of noncommutative geometry, 2024-01, Vol.18 (3), p.995-1039
issn 1661-6952
1661-6960
language eng
recordid cdi_crossref_primary_10_4171_jncg_546
source DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
title Relative Poisson bialgebras and Frobenius Jacobi algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20Poisson%20bialgebras%20and%20Frobenius%20Jacobi%20algebras&rft.jtitle=Journal%20of%20noncommutative%20geometry&rft.au=Liu,%20Guilai&rft.date=2024-01-01&rft.volume=18&rft.issue=3&rft.spage=995&rft.epage=1039&rft.pages=995-1039&rft.issn=1661-6952&rft.eissn=1661-6960&rft_id=info:doi/10.4171/jncg/546&rft_dat=%3Ccrossref%3E10_4171_jncg_546%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true