Vanishing first cohomology and strong 1-boundedness for von Neumann algebras
We obtain a new proof of Shlyakhtenko's result which states that if G is a sofic, finitely presented group with vanishing first \ell^2 -Betti number, then L(G) is strongly 1-bounded. Our proof of this result adapts and simplifies Jung's technical arguments which showed strong 1-boundedness...
Gespeichert in:
Veröffentlicht in: | Journal of noncommutative geometry 2024-01, Vol.18 (2), p.383-409 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 409 |
---|---|
container_issue | 2 |
container_start_page | 383 |
container_title | Journal of noncommutative geometry |
container_volume | 18 |
creator | Hayes, Ben Jekel, David Kunnawalkam Elayavalli, Srivatsav |
description | We obtain a new proof of Shlyakhtenko's result which states that if G is a sofic, finitely presented group with vanishing first \ell^2 -Betti number, then L(G) is strongly 1-bounded. Our proof of this result adapts and simplifies Jung's technical arguments which showed strong 1-boundedness under certain conditions on the Fuglede–Kadison determinant of the matrix capturing the relations. Our proof also features a key idea due to Jung which involves an iterative estimate for the covering numbers of microstate spaces. We also use the works of Shlyakhtenko and Shalom to give a short proof that the von Neumann algebras of sofic groups with Property (T) are strongly 1 bounded, which is a special case of another result by the authors. |
doi_str_mv | 10.4171/jncg/530 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jncg_530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jncg_530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-3308808e7a5057669ed78167ab4fd1fc0ddeeb8239728276453dcf975743a72a3</originalsourceid><addsrcrecordid>eNo90MtKAzEYBeAgCtYq-AhZuonNZXKZpRS1wqAbdTv8k8t0ykwiyVTo29uiuDoHDpzFh9Ato_cV02y1i7ZfSUHP0IIpxYiqFT3_75JfoqtSdpTKymizQM0nxKFsh9jjMOQyY5u2aUpj6g8YosNlzum4MdKlfXTeRV8KDinj7xTxq99PECOGsfddhnKNLgKMxd_85RJ9PD2-rzekeXt-WT80xHLOZyIENYYar0FSqZWqvdOGKQ1dFRwLljrnfWe4qDU3XKtKCmdDraWuBGgOYonufn9tTqVkH9qvPEyQDy2j7UmhPSm0RwXxA6-rUDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vanishing first cohomology and strong 1-boundedness for von Neumann algebras</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hayes, Ben ; Jekel, David ; Kunnawalkam Elayavalli, Srivatsav</creator><creatorcontrib>Hayes, Ben ; Jekel, David ; Kunnawalkam Elayavalli, Srivatsav</creatorcontrib><description>We obtain a new proof of Shlyakhtenko's result which states that if G is a sofic, finitely presented group with vanishing first \ell^2 -Betti number, then L(G) is strongly 1-bounded. Our proof of this result adapts and simplifies Jung's technical arguments which showed strong 1-boundedness under certain conditions on the Fuglede–Kadison determinant of the matrix capturing the relations. Our proof also features a key idea due to Jung which involves an iterative estimate for the covering numbers of microstate spaces. We also use the works of Shlyakhtenko and Shalom to give a short proof that the von Neumann algebras of sofic groups with Property (T) are strongly 1 bounded, which is a special case of another result by the authors.</description><identifier>ISSN: 1661-6952</identifier><identifier>EISSN: 1661-6960</identifier><identifier>DOI: 10.4171/jncg/530</identifier><language>eng</language><ispartof>Journal of noncommutative geometry, 2024-01, Vol.18 (2), p.383-409</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Hayes, Ben</creatorcontrib><creatorcontrib>Jekel, David</creatorcontrib><creatorcontrib>Kunnawalkam Elayavalli, Srivatsav</creatorcontrib><title>Vanishing first cohomology and strong 1-boundedness for von Neumann algebras</title><title>Journal of noncommutative geometry</title><description>We obtain a new proof of Shlyakhtenko's result which states that if G is a sofic, finitely presented group with vanishing first \ell^2 -Betti number, then L(G) is strongly 1-bounded. Our proof of this result adapts and simplifies Jung's technical arguments which showed strong 1-boundedness under certain conditions on the Fuglede–Kadison determinant of the matrix capturing the relations. Our proof also features a key idea due to Jung which involves an iterative estimate for the covering numbers of microstate spaces. We also use the works of Shlyakhtenko and Shalom to give a short proof that the von Neumann algebras of sofic groups with Property (T) are strongly 1 bounded, which is a special case of another result by the authors.</description><issn>1661-6952</issn><issn>1661-6960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo90MtKAzEYBeAgCtYq-AhZuonNZXKZpRS1wqAbdTv8k8t0ykwiyVTo29uiuDoHDpzFh9Ato_cV02y1i7ZfSUHP0IIpxYiqFT3_75JfoqtSdpTKymizQM0nxKFsh9jjMOQyY5u2aUpj6g8YosNlzum4MdKlfXTeRV8KDinj7xTxq99PECOGsfddhnKNLgKMxd_85RJ9PD2-rzekeXt-WT80xHLOZyIENYYar0FSqZWqvdOGKQ1dFRwLljrnfWe4qDU3XKtKCmdDraWuBGgOYonufn9tTqVkH9qvPEyQDy2j7UmhPSm0RwXxA6-rUDw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Hayes, Ben</creator><creator>Jekel, David</creator><creator>Kunnawalkam Elayavalli, Srivatsav</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240101</creationdate><title>Vanishing first cohomology and strong 1-boundedness for von Neumann algebras</title><author>Hayes, Ben ; Jekel, David ; Kunnawalkam Elayavalli, Srivatsav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-3308808e7a5057669ed78167ab4fd1fc0ddeeb8239728276453dcf975743a72a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayes, Ben</creatorcontrib><creatorcontrib>Jekel, David</creatorcontrib><creatorcontrib>Kunnawalkam Elayavalli, Srivatsav</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of noncommutative geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayes, Ben</au><au>Jekel, David</au><au>Kunnawalkam Elayavalli, Srivatsav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vanishing first cohomology and strong 1-boundedness for von Neumann algebras</atitle><jtitle>Journal of noncommutative geometry</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><spage>383</spage><epage>409</epage><pages>383-409</pages><issn>1661-6952</issn><eissn>1661-6960</eissn><abstract>We obtain a new proof of Shlyakhtenko's result which states that if G is a sofic, finitely presented group with vanishing first \ell^2 -Betti number, then L(G) is strongly 1-bounded. Our proof of this result adapts and simplifies Jung's technical arguments which showed strong 1-boundedness under certain conditions on the Fuglede–Kadison determinant of the matrix capturing the relations. Our proof also features a key idea due to Jung which involves an iterative estimate for the covering numbers of microstate spaces. We also use the works of Shlyakhtenko and Shalom to give a short proof that the von Neumann algebras of sofic groups with Property (T) are strongly 1 bounded, which is a special case of another result by the authors.</abstract><doi>10.4171/jncg/530</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-6952 |
ispartof | Journal of noncommutative geometry, 2024-01, Vol.18 (2), p.383-409 |
issn | 1661-6952 1661-6960 |
language | eng |
recordid | cdi_crossref_primary_10_4171_jncg_530 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Vanishing first cohomology and strong 1-boundedness for von Neumann algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vanishing%20first%20cohomology%20and%20strong%201-boundedness%20for%20von%20Neumann%20algebras&rft.jtitle=Journal%20of%20noncommutative%20geometry&rft.au=Hayes,%20Ben&rft.date=2024-01-01&rft.volume=18&rft.issue=2&rft.spage=383&rft.epage=409&rft.pages=383-409&rft.issn=1661-6952&rft.eissn=1661-6960&rft_id=info:doi/10.4171/jncg/530&rft_dat=%3Ccrossref%3E10_4171_jncg_530%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |