Amenability of groups is characterized by Myhill's Theorem. With an appendix by Dawid Kielak

We prove a converse to Myhill's "Garden-of-Eden" theorem and obtain in this manner a characterization of amenability in terms of cellular automata: A group $G$ is amenable if and only if every cellular automaton with carrier $G$ that has gardens of Eden also has mutually erasable patt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2019-06, Vol.21 (10), p.3191-3197
1. Verfasser: Bartholdi, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3197
container_issue 10
container_start_page 3191
container_title Journal of the European Mathematical Society : JEMS
container_volume 21
creator Bartholdi, Laurent
description We prove a converse to Myhill's "Garden-of-Eden" theorem and obtain in this manner a characterization of amenability in terms of cellular automata: A group $G$ is amenable if and only if every cellular automaton with carrier $G$ that has gardens of Eden also has mutually erasable patterns. This answers a question by Schupp, and solves a conjecture by Ceccherini-Silberstein, Machì and Scarabotti. Furthermore, for non-amenable $G$ the cellular automaton with carrier $G$ that has gardens of Eden but no mutually erasable patterns may also be assumed to be linear. An appendix by Dawid Kielak shows that group rings without zero divisors are Ore domains precisely when the group is amenable, answering a conjecture attributed to Guba.
doi_str_mv 10.4171/JEMS/900
format Article
fullrecord <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_JEMS_900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1350-982858ae3d12c0ce9c1b6b423f743fbe30f61fb5b75374a3b5b099cadaa804113</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKvgT8hC0E3bZJLMY1lq66vFhRU3wnCTSZzUeZG06PjrnbHS1T1cPg6HD6FLSsacRnTyOF-9TBJCjtCAciZGSRyy40MW4hSdeb8hhEaCswF6n5a6AmkLu21xbfCHq3eNx9ZjlYMDtdXO_ugMyxav2twWxbXH61zXTpdj_Ga3OYYKQ9PoKrPfPXULXzbDT1YX8HmOTgwUXl_83yF6XczXs_vR8vnuYTZdjhRlgnSzgljEoFlGA0WUThSVoeQBMxFnRmpGTEiNFDISLOLAukSSREEGEBNOKRuim32vcrX3Tpu0cbYE16aUpL2VdKNLn3ZWOvRqj_aPTb1zVTfsgPXy_rBfjZVgtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Amenability of groups is characterized by Myhill's Theorem. With an appendix by Dawid Kielak</title><source>European Mathematical Society Publishing House</source><creator>Bartholdi, Laurent</creator><creatorcontrib>Bartholdi, Laurent</creatorcontrib><description>We prove a converse to Myhill's "Garden-of-Eden" theorem and obtain in this manner a characterization of amenability in terms of cellular automata: A group $G$ is amenable if and only if every cellular automaton with carrier $G$ that has gardens of Eden also has mutually erasable patterns. This answers a question by Schupp, and solves a conjecture by Ceccherini-Silberstein, Machì and Scarabotti. Furthermore, for non-amenable $G$ the cellular automaton with carrier $G$ that has gardens of Eden but no mutually erasable patterns may also be assumed to be linear. An appendix by Dawid Kielak shows that group rings without zero divisors are Ore domains precisely when the group is amenable, answering a conjecture attributed to Guba.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/JEMS/900</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Abstract harmonic analysis ; Associative rings and algebras ; Dynamical systems and ergodic theory</subject><ispartof>Journal of the European Mathematical Society : JEMS, 2019-06, Vol.21 (10), p.3191-3197</ispartof><rights>European Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1350-982858ae3d12c0ce9c1b6b423f743fbe30f61fb5b75374a3b5b099cadaa804113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,24057,27928,27929</link.rule.ids></links><search><creatorcontrib>Bartholdi, Laurent</creatorcontrib><title>Amenability of groups is characterized by Myhill's Theorem. With an appendix by Dawid Kielak</title><title>Journal of the European Mathematical Society : JEMS</title><addtitle>J. Eur. Math. Soc</addtitle><description>We prove a converse to Myhill's "Garden-of-Eden" theorem and obtain in this manner a characterization of amenability in terms of cellular automata: A group $G$ is amenable if and only if every cellular automaton with carrier $G$ that has gardens of Eden also has mutually erasable patterns. This answers a question by Schupp, and solves a conjecture by Ceccherini-Silberstein, Machì and Scarabotti. Furthermore, for non-amenable $G$ the cellular automaton with carrier $G$ that has gardens of Eden but no mutually erasable patterns may also be assumed to be linear. An appendix by Dawid Kielak shows that group rings without zero divisors are Ore domains precisely when the group is amenable, answering a conjecture attributed to Guba.</description><subject>Abstract harmonic analysis</subject><subject>Associative rings and algebras</subject><subject>Dynamical systems and ergodic theory</subject><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKvgT8hC0E3bZJLMY1lq66vFhRU3wnCTSZzUeZG06PjrnbHS1T1cPg6HD6FLSsacRnTyOF-9TBJCjtCAciZGSRyy40MW4hSdeb8hhEaCswF6n5a6AmkLu21xbfCHq3eNx9ZjlYMDtdXO_ugMyxav2twWxbXH61zXTpdj_Ga3OYYKQ9PoKrPfPXULXzbDT1YX8HmOTgwUXl_83yF6XczXs_vR8vnuYTZdjhRlgnSzgljEoFlGA0WUThSVoeQBMxFnRmpGTEiNFDISLOLAukSSREEGEBNOKRuim32vcrX3Tpu0cbYE16aUpL2VdKNLn3ZWOvRqj_aPTb1zVTfsgPXy_rBfjZVgtQ</recordid><startdate>20190619</startdate><enddate>20190619</enddate><creator>Bartholdi, Laurent</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190619</creationdate><title>Amenability of groups is characterized by Myhill's Theorem. With an appendix by Dawid Kielak</title><author>Bartholdi, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1350-982858ae3d12c0ce9c1b6b423f743fbe30f61fb5b75374a3b5b099cadaa804113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abstract harmonic analysis</topic><topic>Associative rings and algebras</topic><topic>Dynamical systems and ergodic theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartholdi, Laurent</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartholdi, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amenability of groups is characterized by Myhill's Theorem. With an appendix by Dawid Kielak</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><addtitle>J. Eur. Math. Soc</addtitle><date>2019-06-19</date><risdate>2019</risdate><volume>21</volume><issue>10</issue><spage>3191</spage><epage>3197</epage><pages>3191-3197</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>We prove a converse to Myhill's "Garden-of-Eden" theorem and obtain in this manner a characterization of amenability in terms of cellular automata: A group $G$ is amenable if and only if every cellular automaton with carrier $G$ that has gardens of Eden also has mutually erasable patterns. This answers a question by Schupp, and solves a conjecture by Ceccherini-Silberstein, Machì and Scarabotti. Furthermore, for non-amenable $G$ the cellular automaton with carrier $G$ that has gardens of Eden but no mutually erasable patterns may also be assumed to be linear. An appendix by Dawid Kielak shows that group rings without zero divisors are Ore domains precisely when the group is amenable, answering a conjecture attributed to Guba.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/JEMS/900</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-9855
ispartof Journal of the European Mathematical Society : JEMS, 2019-06, Vol.21 (10), p.3191-3197
issn 1435-9855
1435-9863
language eng
recordid cdi_crossref_primary_10_4171_jems_900
source European Mathematical Society Publishing House
subjects Abstract harmonic analysis
Associative rings and algebras
Dynamical systems and ergodic theory
title Amenability of groups is characterized by Myhill's Theorem. With an appendix by Dawid Kielak
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amenability%20of%20groups%20is%20characterized%20by%20Myhill's%20Theorem.%20With%20an%20appendix%20by%20Dawid%20Kielak&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Bartholdi,%20Laurent&rft.date=2019-06-19&rft.volume=21&rft.issue=10&rft.spage=3191&rft.epage=3197&rft.pages=3191-3197&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/JEMS/900&rft_dat=%3Cems_cross%3E10_4171_JEMS_900%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true