Higher genus quasimap wall-crossing for semipositive targets

In previous work we have conjectured wall-crossing formulas for genus zero quasimap invariants of GIT quotients and proved them via localization in many cases. We extend these formulas to higher genus when the target is semipositive, and prove them for semipositive toric varieties, in particular for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2017-01, Vol.19 (7), p.2051-2102
Hauptverfasser: Ciocan-Fontanine, Ionuţ, Kim, Bumsig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In previous work we have conjectured wall-crossing formulas for genus zero quasimap invariants of GIT quotients and proved them via localization in many cases. We extend these formulas to higher genus when the target is semipositive, and prove them for semipositive toric varieties, in particular for toric local Calabi–Yau targets. The proof also applies to local Calabi–Yau's associated to some nonabelian quotients.
ISSN:1435-9855
1435-9863
DOI:10.4171/JEMS/713