Sums of squares of polynomials with rational coefficients

We construct families of explicit (homogeneous) polynomials $f$ over $\mathbb Q$ that are sums of squares of polynomials over $\mathbb R$, but not over $\mathbb Q$. Whether or not such examples exist was an open question originally raised by Sturmfels. In the case of ternary quartics we prove that o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2016-01, Vol.18 (7), p.1495-1513
1. Verfasser: Scheiderer, Claus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1513
container_issue 7
container_start_page 1495
container_title Journal of the European Mathematical Society : JEMS
container_volume 18
creator Scheiderer, Claus
description We construct families of explicit (homogeneous) polynomials $f$ over $\mathbb Q$ that are sums of squares of polynomials over $\mathbb R$, but not over $\mathbb Q$. Whether or not such examples exist was an open question originally raised by Sturmfels. In the case of ternary quartics we prove that our construction yields all possible examples. We also study representations of the $f$ we construct as sums of squares of rational functions over $\mathbb Q$, proving lower bounds for the possible degrees of denominators. For deg$(f) = 4$, or for ternary sextics, we obtain explicit such representations with the minimum degree of the denominators.
doi_str_mv 10.4171/JEMS/620
format Article
fullrecord <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_JEMS_620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-bee5fdf0c74a81149083fc893b2501794e991ec108a2da9f8c3bc17ed64afcfb3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqUg8Qg5cOASasd2Yh9RVf5UxKFwjhxnVzhK6mInQn17khb1NKPRp9XMEnLL6INgBVu8rd43izyjZ2TGBJepVjk_P3kpL8lVjA2lrJCCz4jeDF1MPCbxZzABDnbn2_3Wd860Mfl1_XcSTO_81rSJ9YDorINtH6_JBY4E3PzrnHw9rT6XL-n64_l1-bhOLc90n1YAEmukthBGMSY0VRyt0rzK5FhCC9CagWVUmaw2GpXllWUF1LkwaLHic3J_vGuDjzEAlrvgOhP2JaPlNLlsoIvlOHlE747oFDR-CGPneMKmzxywP08uVf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sums of squares of polynomials with rational coefficients</title><source>European Mathematical Society Publishing House</source><creator>Scheiderer, Claus</creator><creatorcontrib>Scheiderer, Claus</creatorcontrib><description>We construct families of explicit (homogeneous) polynomials $f$ over $\mathbb Q$ that are sums of squares of polynomials over $\mathbb R$, but not over $\mathbb Q$. Whether or not such examples exist was an open question originally raised by Sturmfels. In the case of ternary quartics we prove that our construction yields all possible examples. We also study representations of the $f$ we construct as sums of squares of rational functions over $\mathbb Q$, proving lower bounds for the possible degrees of denominators. For deg$(f) = 4$, or for ternary sextics, we obtain explicit such representations with the minimum degree of the denominators.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/JEMS/620</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Algebraic geometry ; Number theory ; Operations research, mathematical programming</subject><ispartof>Journal of the European Mathematical Society : JEMS, 2016-01, Vol.18 (7), p.1495-1513</ispartof><rights>European Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-bee5fdf0c74a81149083fc893b2501794e991ec108a2da9f8c3bc17ed64afcfb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,24034,27905,27906</link.rule.ids></links><search><creatorcontrib>Scheiderer, Claus</creatorcontrib><title>Sums of squares of polynomials with rational coefficients</title><title>Journal of the European Mathematical Society : JEMS</title><addtitle>J. Eur. Math. Soc</addtitle><description>We construct families of explicit (homogeneous) polynomials $f$ over $\mathbb Q$ that are sums of squares of polynomials over $\mathbb R$, but not over $\mathbb Q$. Whether or not such examples exist was an open question originally raised by Sturmfels. In the case of ternary quartics we prove that our construction yields all possible examples. We also study representations of the $f$ we construct as sums of squares of rational functions over $\mathbb Q$, proving lower bounds for the possible degrees of denominators. For deg$(f) = 4$, or for ternary sextics, we obtain explicit such representations with the minimum degree of the denominators.</description><subject>Algebraic geometry</subject><subject>Number theory</subject><subject>Operations research, mathematical programming</subject><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqUg8Qg5cOASasd2Yh9RVf5UxKFwjhxnVzhK6mInQn17khb1NKPRp9XMEnLL6INgBVu8rd43izyjZ2TGBJepVjk_P3kpL8lVjA2lrJCCz4jeDF1MPCbxZzABDnbn2_3Wd860Mfl1_XcSTO_81rSJ9YDorINtH6_JBY4E3PzrnHw9rT6XL-n64_l1-bhOLc90n1YAEmukthBGMSY0VRyt0rzK5FhCC9CagWVUmaw2GpXllWUF1LkwaLHic3J_vGuDjzEAlrvgOhP2JaPlNLlsoIvlOHlE747oFDR-CGPneMKmzxywP08uVf4</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Scheiderer, Claus</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160101</creationdate><title>Sums of squares of polynomials with rational coefficients</title><author>Scheiderer, Claus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-bee5fdf0c74a81149083fc893b2501794e991ec108a2da9f8c3bc17ed64afcfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebraic geometry</topic><topic>Number theory</topic><topic>Operations research, mathematical programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheiderer, Claus</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheiderer, Claus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sums of squares of polynomials with rational coefficients</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><addtitle>J. Eur. Math. Soc</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>18</volume><issue>7</issue><spage>1495</spage><epage>1513</epage><pages>1495-1513</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>We construct families of explicit (homogeneous) polynomials $f$ over $\mathbb Q$ that are sums of squares of polynomials over $\mathbb R$, but not over $\mathbb Q$. Whether or not such examples exist was an open question originally raised by Sturmfels. In the case of ternary quartics we prove that our construction yields all possible examples. We also study representations of the $f$ we construct as sums of squares of rational functions over $\mathbb Q$, proving lower bounds for the possible degrees of denominators. For deg$(f) = 4$, or for ternary sextics, we obtain explicit such representations with the minimum degree of the denominators.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/JEMS/620</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-9855
ispartof Journal of the European Mathematical Society : JEMS, 2016-01, Vol.18 (7), p.1495-1513
issn 1435-9855
1435-9863
language eng
recordid cdi_crossref_primary_10_4171_jems_620
source European Mathematical Society Publishing House
subjects Algebraic geometry
Number theory
Operations research, mathematical programming
title Sums of squares of polynomials with rational coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sums%20of%20squares%20of%20polynomials%20with%20rational%20coefficients&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Scheiderer,%20Claus&rft.date=2016-01-01&rft.volume=18&rft.issue=7&rft.spage=1495&rft.epage=1513&rft.pages=1495-1513&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/JEMS/620&rft_dat=%3Cems_cross%3E10_4171_JEMS_620%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true