Sums of squares of polynomials with rational coefficients
We construct families of explicit (homogeneous) polynomials $f$ over $\mathbb Q$ that are sums of squares of polynomials over $\mathbb R$, but not over $\mathbb Q$. Whether or not such examples exist was an open question originally raised by Sturmfels. In the case of ternary quartics we prove that o...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2016-01, Vol.18 (7), p.1495-1513 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1513 |
---|---|
container_issue | 7 |
container_start_page | 1495 |
container_title | Journal of the European Mathematical Society : JEMS |
container_volume | 18 |
creator | Scheiderer, Claus |
description | We construct families of explicit (homogeneous) polynomials $f$ over $\mathbb Q$ that are sums of squares of polynomials over $\mathbb R$, but not over $\mathbb Q$. Whether or not such examples exist was an open question originally raised by Sturmfels. In the case of ternary quartics we prove that our construction yields all possible examples. We also study representations of the $f$ we construct as sums of squares of rational functions over $\mathbb Q$, proving lower bounds for the possible degrees of denominators. For deg$(f) = 4$, or for ternary sextics, we obtain explicit such representations with the minimum degree of the denominators. |
doi_str_mv | 10.4171/JEMS/620 |
format | Article |
fullrecord | <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_JEMS_620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-bee5fdf0c74a81149083fc893b2501794e991ec108a2da9f8c3bc17ed64afcfb3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqUg8Qg5cOASasd2Yh9RVf5UxKFwjhxnVzhK6mInQn17khb1NKPRp9XMEnLL6INgBVu8rd43izyjZ2TGBJepVjk_P3kpL8lVjA2lrJCCz4jeDF1MPCbxZzABDnbn2_3Wd860Mfl1_XcSTO_81rSJ9YDorINtH6_JBY4E3PzrnHw9rT6XL-n64_l1-bhOLc90n1YAEmukthBGMSY0VRyt0rzK5FhCC9CagWVUmaw2GpXllWUF1LkwaLHic3J_vGuDjzEAlrvgOhP2JaPlNLlsoIvlOHlE747oFDR-CGPneMKmzxywP08uVf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sums of squares of polynomials with rational coefficients</title><source>European Mathematical Society Publishing House</source><creator>Scheiderer, Claus</creator><creatorcontrib>Scheiderer, Claus</creatorcontrib><description>We construct families of explicit (homogeneous) polynomials $f$ over $\mathbb Q$ that are sums of squares of polynomials over $\mathbb R$, but not over $\mathbb Q$. Whether or not such examples exist was an open question originally raised by Sturmfels. In the case of ternary quartics we prove that our construction yields all possible examples. We also study representations of the $f$ we construct as sums of squares of rational functions over $\mathbb Q$, proving lower bounds for the possible degrees of denominators. For deg$(f) = 4$, or for ternary sextics, we obtain explicit such representations with the minimum degree of the denominators.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/JEMS/620</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Algebraic geometry ; Number theory ; Operations research, mathematical programming</subject><ispartof>Journal of the European Mathematical Society : JEMS, 2016-01, Vol.18 (7), p.1495-1513</ispartof><rights>European Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-bee5fdf0c74a81149083fc893b2501794e991ec108a2da9f8c3bc17ed64afcfb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,24034,27905,27906</link.rule.ids></links><search><creatorcontrib>Scheiderer, Claus</creatorcontrib><title>Sums of squares of polynomials with rational coefficients</title><title>Journal of the European Mathematical Society : JEMS</title><addtitle>J. Eur. Math. Soc</addtitle><description>We construct families of explicit (homogeneous) polynomials $f$ over $\mathbb Q$ that are sums of squares of polynomials over $\mathbb R$, but not over $\mathbb Q$. Whether or not such examples exist was an open question originally raised by Sturmfels. In the case of ternary quartics we prove that our construction yields all possible examples. We also study representations of the $f$ we construct as sums of squares of rational functions over $\mathbb Q$, proving lower bounds for the possible degrees of denominators. For deg$(f) = 4$, or for ternary sextics, we obtain explicit such representations with the minimum degree of the denominators.</description><subject>Algebraic geometry</subject><subject>Number theory</subject><subject>Operations research, mathematical programming</subject><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqUg8Qg5cOASasd2Yh9RVf5UxKFwjhxnVzhK6mInQn17khb1NKPRp9XMEnLL6INgBVu8rd43izyjZ2TGBJepVjk_P3kpL8lVjA2lrJCCz4jeDF1MPCbxZzABDnbn2_3Wd860Mfl1_XcSTO_81rSJ9YDorINtH6_JBY4E3PzrnHw9rT6XL-n64_l1-bhOLc90n1YAEmukthBGMSY0VRyt0rzK5FhCC9CagWVUmaw2GpXllWUF1LkwaLHic3J_vGuDjzEAlrvgOhP2JaPlNLlsoIvlOHlE747oFDR-CGPneMKmzxywP08uVf4</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Scheiderer, Claus</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160101</creationdate><title>Sums of squares of polynomials with rational coefficients</title><author>Scheiderer, Claus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-bee5fdf0c74a81149083fc893b2501794e991ec108a2da9f8c3bc17ed64afcfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebraic geometry</topic><topic>Number theory</topic><topic>Operations research, mathematical programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheiderer, Claus</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheiderer, Claus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sums of squares of polynomials with rational coefficients</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><addtitle>J. Eur. Math. Soc</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>18</volume><issue>7</issue><spage>1495</spage><epage>1513</epage><pages>1495-1513</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>We construct families of explicit (homogeneous) polynomials $f$ over $\mathbb Q$ that are sums of squares of polynomials over $\mathbb R$, but not over $\mathbb Q$. Whether or not such examples exist was an open question originally raised by Sturmfels. In the case of ternary quartics we prove that our construction yields all possible examples. We also study representations of the $f$ we construct as sums of squares of rational functions over $\mathbb Q$, proving lower bounds for the possible degrees of denominators. For deg$(f) = 4$, or for ternary sextics, we obtain explicit such representations with the minimum degree of the denominators.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/JEMS/620</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-9855 |
ispartof | Journal of the European Mathematical Society : JEMS, 2016-01, Vol.18 (7), p.1495-1513 |
issn | 1435-9855 1435-9863 |
language | eng |
recordid | cdi_crossref_primary_10_4171_jems_620 |
source | European Mathematical Society Publishing House |
subjects | Algebraic geometry Number theory Operations research, mathematical programming |
title | Sums of squares of polynomials with rational coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sums%20of%20squares%20of%20polynomials%20with%20rational%20coefficients&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Scheiderer,%20Claus&rft.date=2016-01-01&rft.volume=18&rft.issue=7&rft.spage=1495&rft.epage=1513&rft.pages=1495-1513&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/JEMS/620&rft_dat=%3Cems_cross%3E10_4171_JEMS_620%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |