Hyperbolic monodromy groups for the hypergeometric equation and Cartan involutions
We give a criterion which ensures that a group generated by Cartan involutions in the automorph group of a rational quadratic form of signature $(n-1,1)$ is "thin", namely it is of infinite index in the latter. It is based on a graph defined on the integral Cartan root vectors, as well as...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2014-01, Vol.16 (8), p.1617-1671 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1671 |
---|---|
container_issue | 8 |
container_start_page | 1617 |
container_title | Journal of the European Mathematical Society : JEMS |
container_volume | 16 |
creator | Fuchs, Elena Meiri, Chen Sarnak, Peter |
description | We give a criterion which ensures that a group generated by Cartan involutions in the automorph group of a rational quadratic form of signature $(n-1,1)$ is "thin", namely it is of infinite index in the latter. It is based on a graph defined on the integral Cartan root vectors, as well as Vinberg's theory of hyperbolic reflection groups. The criterion is shown to be robust for showing that many hyperbolic hypergeometric groups for $_nF_{n-1}$ are thin. |
doi_str_mv | 10.4171/JEMS/471 |
format | Article |
fullrecord | <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_JEMS_471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-83fa30d5cac827ea186c82ca39a9dc35247044330e9059acc3c8d4fb809956773</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKfgT8iFF97UJTtJ01xKmZsyEfy4Llmabi1tUpNW6L-3dbKr8_Ly8HJ4ELql5IFRQRcvq9ePBRP0DM0oAx7JJIbzU-b8El2FUBFCBWcwQ--boTV-5-pS48ZZl3vXDHjvXd8GXDiPu4PBh4nZG9eYzo-c-e5VVzqLlc1xqnynLC7tj6v7qQ3X6KJQdTA3_3eOvp5Wn-km2r6tn9PHbaRB8i5KoFBAcq6VTpbCKJrEY9AKpJK5Br5kgjAGQIwkXCqtQSc5K3YJkZLHQsAc3R93tXcheFNkrS8b5YeMkmxykVWmCdnoYkTvjuhUVK73dnzshE3K_rBf-nJe9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hyperbolic monodromy groups for the hypergeometric equation and Cartan involutions</title><source>European Mathematical Society Publishing House</source><creator>Fuchs, Elena ; Meiri, Chen ; Sarnak, Peter</creator><creatorcontrib>Fuchs, Elena ; Meiri, Chen ; Sarnak, Peter</creatorcontrib><description>We give a criterion which ensures that a group generated by Cartan involutions in the automorph group of a rational quadratic form of signature $(n-1,1)$ is "thin", namely it is of infinite index in the latter. It is based on a graph defined on the integral Cartan root vectors, as well as Vinberg's theory of hyperbolic reflection groups. The criterion is shown to be robust for showing that many hyperbolic hypergeometric groups for $_nF_{n-1}$ are thin.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/JEMS/471</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Group theory and generalizations</subject><ispartof>Journal of the European Mathematical Society : JEMS, 2014-01, Vol.16 (8), p.1617-1671</ispartof><rights>European Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-83fa30d5cac827ea186c82ca39a9dc35247044330e9059acc3c8d4fb809956773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,24058,27929,27930</link.rule.ids></links><search><creatorcontrib>Fuchs, Elena</creatorcontrib><creatorcontrib>Meiri, Chen</creatorcontrib><creatorcontrib>Sarnak, Peter</creatorcontrib><title>Hyperbolic monodromy groups for the hypergeometric equation and Cartan involutions</title><title>Journal of the European Mathematical Society : JEMS</title><addtitle>J. Eur. Math. Soc</addtitle><description>We give a criterion which ensures that a group generated by Cartan involutions in the automorph group of a rational quadratic form of signature $(n-1,1)$ is "thin", namely it is of infinite index in the latter. It is based on a graph defined on the integral Cartan root vectors, as well as Vinberg's theory of hyperbolic reflection groups. The criterion is shown to be robust for showing that many hyperbolic hypergeometric groups for $_nF_{n-1}$ are thin.</description><subject>Group theory and generalizations</subject><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKfgT8iFF97UJTtJ01xKmZsyEfy4Llmabi1tUpNW6L-3dbKr8_Ly8HJ4ELql5IFRQRcvq9ePBRP0DM0oAx7JJIbzU-b8El2FUBFCBWcwQ--boTV-5-pS48ZZl3vXDHjvXd8GXDiPu4PBh4nZG9eYzo-c-e5VVzqLlc1xqnynLC7tj6v7qQ3X6KJQdTA3_3eOvp5Wn-km2r6tn9PHbaRB8i5KoFBAcq6VTpbCKJrEY9AKpJK5Br5kgjAGQIwkXCqtQSc5K3YJkZLHQsAc3R93tXcheFNkrS8b5YeMkmxykVWmCdnoYkTvjuhUVK73dnzshE3K_rBf-nJe9A</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Fuchs, Elena</creator><creator>Meiri, Chen</creator><creator>Sarnak, Peter</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140101</creationdate><title>Hyperbolic monodromy groups for the hypergeometric equation and Cartan involutions</title><author>Fuchs, Elena ; Meiri, Chen ; Sarnak, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-83fa30d5cac827ea186c82ca39a9dc35247044330e9059acc3c8d4fb809956773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Group theory and generalizations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuchs, Elena</creatorcontrib><creatorcontrib>Meiri, Chen</creatorcontrib><creatorcontrib>Sarnak, Peter</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuchs, Elena</au><au>Meiri, Chen</au><au>Sarnak, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic monodromy groups for the hypergeometric equation and Cartan involutions</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><addtitle>J. Eur. Math. Soc</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>16</volume><issue>8</issue><spage>1617</spage><epage>1671</epage><pages>1617-1671</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>We give a criterion which ensures that a group generated by Cartan involutions in the automorph group of a rational quadratic form of signature $(n-1,1)$ is "thin", namely it is of infinite index in the latter. It is based on a graph defined on the integral Cartan root vectors, as well as Vinberg's theory of hyperbolic reflection groups. The criterion is shown to be robust for showing that many hyperbolic hypergeometric groups for $_nF_{n-1}$ are thin.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/JEMS/471</doi><tpages>55</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-9855 |
ispartof | Journal of the European Mathematical Society : JEMS, 2014-01, Vol.16 (8), p.1617-1671 |
issn | 1435-9855 1435-9863 |
language | eng |
recordid | cdi_crossref_primary_10_4171_jems_471 |
source | European Mathematical Society Publishing House |
subjects | Group theory and generalizations |
title | Hyperbolic monodromy groups for the hypergeometric equation and Cartan involutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A54%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20monodromy%20groups%20for%20the%20hypergeometric%20equation%20and%20Cartan%20involutions&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Fuchs,%20Elena&rft.date=2014-01-01&rft.volume=16&rft.issue=8&rft.spage=1617&rft.epage=1671&rft.pages=1617-1671&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/JEMS/471&rft_dat=%3Cems_cross%3E10_4171_JEMS_471%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |