On a magnetic characterization of spectral minimal partitions

Given a bounded open set $\Omega$ in $ \mathbb R^n$ (or in a Riemannian manifold) and a partition of $\Omega$ by $k$ open sets $D_j$, we consider the quantity $\max_j \lambda(D_j)$ where $\lambda(D_j)$ is the ground state energy of the Dirichlet realization of the Laplacian in $D_j$. If we denote by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2013-01, Vol.15 (6), p.2081-2092
Hauptverfasser: Helffer, Bernard, Hoffmann-Ostenhof, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2092
container_issue 6
container_start_page 2081
container_title Journal of the European Mathematical Society : JEMS
container_volume 15
creator Helffer, Bernard
Hoffmann-Ostenhof, Thomas
description Given a bounded open set $\Omega$ in $ \mathbb R^n$ (or in a Riemannian manifold) and a partition of $\Omega$ by $k$ open sets $D_j$, we consider the quantity $\max_j \lambda(D_j)$ where $\lambda(D_j)$ is the ground state energy of the Dirichlet realization of the Laplacian in $D_j$. If we denote by $ \mathfrak L_k(\Omega)$ the infimum over all the $k$-partitions of $ \max_j \lambda(D_j)$, a minimal $k$-partition is then a partition which realizes the infimum. When $k=2$, we find the two nodal domains of a second eigenfunction, but the analysis of higher $k$'s is non trivial and quite interesting. In this paper, we give the proof of one conjecture formulated in \cite{BH} and \cite{HeEg} about a magnetic characterization of the minimal partitions when $n=2$.
doi_str_mv 10.4171/JEMS/415
format Article
fullrecord <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_JEMS_415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-7b43a15ccbf989edb7e1b9d8169e3129074df05a17944682ad422cc8e58dc09d3</originalsourceid><addsrcrecordid>eNo9kDtPAzEQhC0EEiEg8RNcUNAc8Z7ts11QoCi8FJQCqE8-2weOcg_ZpoBfj4-gVDPa_bSaWYQugdwwELB4Xr28LhjwIzQDRnmhZEWPD57zU3QW45YQEJzRGbrd9FjjTn_0LnmDzacO2iQX_I9Ofujx0OI4OpOC3uHO977LOuqQ_LSN5-ik1bvoLv51jt7vV2_Lx2K9eXha3q0LUyqSCtEwqoEb07RKKmcb4aBRVkKlHIWMCGZbwjUIxVglS21ZWRojHZfWEGXpHF3v75owxBhcW48hRwnfNZB6ql1vXRez4xm92qPTYDt8hT4HO2DTd_6wX45FVrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a magnetic characterization of spectral minimal partitions</title><source>European Mathematical Society Publishing House</source><creator>Helffer, Bernard ; Hoffmann-Ostenhof, Thomas</creator><creatorcontrib>Helffer, Bernard ; Hoffmann-Ostenhof, Thomas</creatorcontrib><description>Given a bounded open set $\Omega$ in $ \mathbb R^n$ (or in a Riemannian manifold) and a partition of $\Omega$ by $k$ open sets $D_j$, we consider the quantity $\max_j \lambda(D_j)$ where $\lambda(D_j)$ is the ground state energy of the Dirichlet realization of the Laplacian in $D_j$. If we denote by $ \mathfrak L_k(\Omega)$ the infimum over all the $k$-partitions of $ \max_j \lambda(D_j)$, a minimal $k$-partition is then a partition which realizes the infimum. When $k=2$, we find the two nodal domains of a second eigenfunction, but the analysis of higher $k$'s is non trivial and quite interesting. In this paper, we give the proof of one conjecture formulated in \cite{BH} and \cite{HeEg} about a magnetic characterization of the minimal partitions when $n=2$.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/JEMS/415</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Partial differential equations</subject><ispartof>Journal of the European Mathematical Society : JEMS, 2013-01, Vol.15 (6), p.2081-2092</ispartof><rights>European Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-7b43a15ccbf989edb7e1b9d8169e3129074df05a17944682ad422cc8e58dc09d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,24058,27929,27930</link.rule.ids></links><search><creatorcontrib>Helffer, Bernard</creatorcontrib><creatorcontrib>Hoffmann-Ostenhof, Thomas</creatorcontrib><title>On a magnetic characterization of spectral minimal partitions</title><title>Journal of the European Mathematical Society : JEMS</title><addtitle>J. Eur. Math. Soc</addtitle><description>Given a bounded open set $\Omega$ in $ \mathbb R^n$ (or in a Riemannian manifold) and a partition of $\Omega$ by $k$ open sets $D_j$, we consider the quantity $\max_j \lambda(D_j)$ where $\lambda(D_j)$ is the ground state energy of the Dirichlet realization of the Laplacian in $D_j$. If we denote by $ \mathfrak L_k(\Omega)$ the infimum over all the $k$-partitions of $ \max_j \lambda(D_j)$, a minimal $k$-partition is then a partition which realizes the infimum. When $k=2$, we find the two nodal domains of a second eigenfunction, but the analysis of higher $k$'s is non trivial and quite interesting. In this paper, we give the proof of one conjecture formulated in \cite{BH} and \cite{HeEg} about a magnetic characterization of the minimal partitions when $n=2$.</description><subject>Partial differential equations</subject><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPAzEQhC0EEiEg8RNcUNAc8Z7ts11QoCi8FJQCqE8-2weOcg_ZpoBfj4-gVDPa_bSaWYQugdwwELB4Xr28LhjwIzQDRnmhZEWPD57zU3QW45YQEJzRGbrd9FjjTn_0LnmDzacO2iQX_I9Ofujx0OI4OpOC3uHO977LOuqQ_LSN5-ik1bvoLv51jt7vV2_Lx2K9eXha3q0LUyqSCtEwqoEb07RKKmcb4aBRVkKlHIWMCGZbwjUIxVglS21ZWRojHZfWEGXpHF3v75owxBhcW48hRwnfNZB6ql1vXRez4xm92qPTYDt8hT4HO2DTd_6wX45FVrI</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Helffer, Bernard</creator><creator>Hoffmann-Ostenhof, Thomas</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130101</creationdate><title>On a magnetic characterization of spectral minimal partitions</title><author>Helffer, Bernard ; Hoffmann-Ostenhof, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-7b43a15ccbf989edb7e1b9d8169e3129074df05a17944682ad422cc8e58dc09d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helffer, Bernard</creatorcontrib><creatorcontrib>Hoffmann-Ostenhof, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helffer, Bernard</au><au>Hoffmann-Ostenhof, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a magnetic characterization of spectral minimal partitions</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><addtitle>J. Eur. Math. Soc</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>15</volume><issue>6</issue><spage>2081</spage><epage>2092</epage><pages>2081-2092</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>Given a bounded open set $\Omega$ in $ \mathbb R^n$ (or in a Riemannian manifold) and a partition of $\Omega$ by $k$ open sets $D_j$, we consider the quantity $\max_j \lambda(D_j)$ where $\lambda(D_j)$ is the ground state energy of the Dirichlet realization of the Laplacian in $D_j$. If we denote by $ \mathfrak L_k(\Omega)$ the infimum over all the $k$-partitions of $ \max_j \lambda(D_j)$, a minimal $k$-partition is then a partition which realizes the infimum. When $k=2$, we find the two nodal domains of a second eigenfunction, but the analysis of higher $k$'s is non trivial and quite interesting. In this paper, we give the proof of one conjecture formulated in \cite{BH} and \cite{HeEg} about a magnetic characterization of the minimal partitions when $n=2$.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/JEMS/415</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-9855
ispartof Journal of the European Mathematical Society : JEMS, 2013-01, Vol.15 (6), p.2081-2092
issn 1435-9855
1435-9863
language eng
recordid cdi_crossref_primary_10_4171_jems_415
source European Mathematical Society Publishing House
subjects Partial differential equations
title On a magnetic characterization of spectral minimal partitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20magnetic%20characterization%20of%20spectral%20minimal%20partitions&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Helffer,%20Bernard&rft.date=2013-01-01&rft.volume=15&rft.issue=6&rft.spage=2081&rft.epage=2092&rft.pages=2081-2092&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/JEMS/415&rft_dat=%3Cems_cross%3E10_4171_JEMS_415%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true