On the structure of Hardy–Sobolev–Maz'ya inequalities
We establish new improvements of the optimal Hardy inequality in the half-space. We first add all possible linear combinations of Hardy type terms, thus revealing the structure of this type of inequalities and obtaining best constants. We then add the critical Sobolev term and obtain necessary and su...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2009-01, Vol.11 (6), p.1165-1185 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1185 |
---|---|
container_issue | 6 |
container_start_page | 1165 |
container_title | Journal of the European Mathematical Society : JEMS |
container_volume | 11 |
creator | Filippas, Stathis Tertikas, Achilles Tidblom, Jesper |
description | We establish new improvements of the optimal Hardy inequality in the half-space. We first add all possible linear combinations of Hardy type terms, thus revealing the structure of this type of inequalities and obtaining best constants. We then add the critical Sobolev term and obtain necessary and sufficient conditions for the validity of Hardy–Sobolev–Maz’ya type inequalities. |
doi_str_mv | 10.4171/JEMS/178 |
format | Article |
fullrecord | <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_JEMS_178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7febc3f76e257c70f8d0cc15fb06e64e852e120efa640c9debeced7008cd71e03</originalsourceid><addsrcrecordid>eNo9kMFKw0AURQdRsFbBT8hC0E3sm0xmJllKqVZp6aK6DpPJG0xIE52ZCHHlP_iHfomJla7u5XJ4vHsJuaRwG1NJZ0-L9XZGZXJEJjRmPEwTwY4PnvNTcuZcBUAlj9mEpJsm8K8YOG877TuLQWuCpbJF__P1vW3ztsaPwa3V53WvgrLB907VpS_RnZMTo2qHF_86JS_3i-f5MlxtHh7nd6tQMy58KA3mmhkpMOJSSzBJAVpTbnIQKGJMeIQ0AjRKxKDTAnPUWEiARBeSIrApudnf1bZ1zqLJ3my5U7bPKGRj5azCncuGygN6tUfHoGo72wyPHbBxmT_sF7A4V8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the structure of Hardy–Sobolev–Maz'ya inequalities</title><source>European Mathematical Society Publishing House</source><creator>Filippas, Stathis ; Tertikas, Achilles ; Tidblom, Jesper</creator><creatorcontrib>Filippas, Stathis ; Tertikas, Achilles ; Tidblom, Jesper</creatorcontrib><description>We establish new improvements of the optimal Hardy inequality in the half-space. We first add all possible linear combinations of Hardy type terms, thus revealing the structure of this type of inequalities and obtaining best constants. We then add the critical Sobolev term and obtain necessary and sufficient conditions for the validity of Hardy–Sobolev–Maz’ya type inequalities.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/JEMS/178</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Partial differential equations</subject><ispartof>Journal of the European Mathematical Society : JEMS, 2009-01, Vol.11 (6), p.1165-1185</ispartof><rights>European Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7febc3f76e257c70f8d0cc15fb06e64e852e120efa640c9debeced7008cd71e03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,24034,27905,27906</link.rule.ids></links><search><creatorcontrib>Filippas, Stathis</creatorcontrib><creatorcontrib>Tertikas, Achilles</creatorcontrib><creatorcontrib>Tidblom, Jesper</creatorcontrib><title>On the structure of Hardy–Sobolev–Maz'ya inequalities</title><title>Journal of the European Mathematical Society : JEMS</title><addtitle>J. Eur. Math. Soc</addtitle><description>We establish new improvements of the optimal Hardy inequality in the half-space. We first add all possible linear combinations of Hardy type terms, thus revealing the structure of this type of inequalities and obtaining best constants. We then add the critical Sobolev term and obtain necessary and sufficient conditions for the validity of Hardy–Sobolev–Maz’ya type inequalities.</description><subject>Partial differential equations</subject><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKw0AURQdRsFbBT8hC0E3sm0xmJllKqVZp6aK6DpPJG0xIE52ZCHHlP_iHfomJla7u5XJ4vHsJuaRwG1NJZ0-L9XZGZXJEJjRmPEwTwY4PnvNTcuZcBUAlj9mEpJsm8K8YOG877TuLQWuCpbJF__P1vW3ztsaPwa3V53WvgrLB907VpS_RnZMTo2qHF_86JS_3i-f5MlxtHh7nd6tQMy58KA3mmhkpMOJSSzBJAVpTbnIQKGJMeIQ0AjRKxKDTAnPUWEiARBeSIrApudnf1bZ1zqLJ3my5U7bPKGRj5azCncuGygN6tUfHoGo72wyPHbBxmT_sF7A4V8w</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Filippas, Stathis</creator><creator>Tertikas, Achilles</creator><creator>Tidblom, Jesper</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090101</creationdate><title>On the structure of Hardy–Sobolev–Maz'ya inequalities</title><author>Filippas, Stathis ; Tertikas, Achilles ; Tidblom, Jesper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7febc3f76e257c70f8d0cc15fb06e64e852e120efa640c9debeced7008cd71e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filippas, Stathis</creatorcontrib><creatorcontrib>Tertikas, Achilles</creatorcontrib><creatorcontrib>Tidblom, Jesper</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filippas, Stathis</au><au>Tertikas, Achilles</au><au>Tidblom, Jesper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the structure of Hardy–Sobolev–Maz'ya inequalities</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><addtitle>J. Eur. Math. Soc</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>11</volume><issue>6</issue><spage>1165</spage><epage>1185</epage><pages>1165-1185</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>We establish new improvements of the optimal Hardy inequality in the half-space. We first add all possible linear combinations of Hardy type terms, thus revealing the structure of this type of inequalities and obtaining best constants. We then add the critical Sobolev term and obtain necessary and sufficient conditions for the validity of Hardy–Sobolev–Maz’ya type inequalities.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/JEMS/178</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-9855 |
ispartof | Journal of the European Mathematical Society : JEMS, 2009-01, Vol.11 (6), p.1165-1185 |
issn | 1435-9855 1435-9863 |
language | eng |
recordid | cdi_crossref_primary_10_4171_jems_178 |
source | European Mathematical Society Publishing House |
subjects | Partial differential equations |
title | On the structure of Hardy–Sobolev–Maz'ya inequalities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20structure%20of%20Hardy%E2%80%93Sobolev%E2%80%93Maz'ya%20inequalities&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Filippas,%20Stathis&rft.date=2009-01-01&rft.volume=11&rft.issue=6&rft.spage=1165&rft.epage=1185&rft.pages=1165-1185&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/JEMS/178&rft_dat=%3Cems_cross%3E10_4171_JEMS_178%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |