On the structure of Hardy–Sobolev–Maz'ya inequalities

We establish new improvements of the optimal Hardy inequality in the half-space. We first add all possible linear combinations of Hardy type terms, thus revealing the structure of this type of inequalities and obtaining best constants. We then add the critical Sobolev term and obtain necessary and su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2009-01, Vol.11 (6), p.1165-1185
Hauptverfasser: Filippas, Stathis, Tertikas, Achilles, Tidblom, Jesper
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1185
container_issue 6
container_start_page 1165
container_title Journal of the European Mathematical Society : JEMS
container_volume 11
creator Filippas, Stathis
Tertikas, Achilles
Tidblom, Jesper
description We establish new improvements of the optimal Hardy inequality in the half-space. We first add all possible linear combinations of Hardy type terms, thus revealing the structure of this type of inequalities and obtaining best constants. We then add the critical Sobolev term and obtain necessary and sufficient conditions for the validity of Hardy–Sobolev–Maz’ya type inequalities.
doi_str_mv 10.4171/JEMS/178
format Article
fullrecord <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_JEMS_178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7febc3f76e257c70f8d0cc15fb06e64e852e120efa640c9debeced7008cd71e03</originalsourceid><addsrcrecordid>eNo9kMFKw0AURQdRsFbBT8hC0E3sm0xmJllKqVZp6aK6DpPJG0xIE52ZCHHlP_iHfomJla7u5XJ4vHsJuaRwG1NJZ0-L9XZGZXJEJjRmPEwTwY4PnvNTcuZcBUAlj9mEpJsm8K8YOG877TuLQWuCpbJF__P1vW3ztsaPwa3V53WvgrLB907VpS_RnZMTo2qHF_86JS_3i-f5MlxtHh7nd6tQMy58KA3mmhkpMOJSSzBJAVpTbnIQKGJMeIQ0AjRKxKDTAnPUWEiARBeSIrApudnf1bZ1zqLJ3my5U7bPKGRj5azCncuGygN6tUfHoGo72wyPHbBxmT_sF7A4V8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the structure of Hardy–Sobolev–Maz'ya inequalities</title><source>European Mathematical Society Publishing House</source><creator>Filippas, Stathis ; Tertikas, Achilles ; Tidblom, Jesper</creator><creatorcontrib>Filippas, Stathis ; Tertikas, Achilles ; Tidblom, Jesper</creatorcontrib><description>We establish new improvements of the optimal Hardy inequality in the half-space. We first add all possible linear combinations of Hardy type terms, thus revealing the structure of this type of inequalities and obtaining best constants. We then add the critical Sobolev term and obtain necessary and sufficient conditions for the validity of Hardy–Sobolev–Maz’ya type inequalities.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/JEMS/178</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Partial differential equations</subject><ispartof>Journal of the European Mathematical Society : JEMS, 2009-01, Vol.11 (6), p.1165-1185</ispartof><rights>European Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7febc3f76e257c70f8d0cc15fb06e64e852e120efa640c9debeced7008cd71e03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,24034,27905,27906</link.rule.ids></links><search><creatorcontrib>Filippas, Stathis</creatorcontrib><creatorcontrib>Tertikas, Achilles</creatorcontrib><creatorcontrib>Tidblom, Jesper</creatorcontrib><title>On the structure of Hardy–Sobolev–Maz'ya inequalities</title><title>Journal of the European Mathematical Society : JEMS</title><addtitle>J. Eur. Math. Soc</addtitle><description>We establish new improvements of the optimal Hardy inequality in the half-space. We first add all possible linear combinations of Hardy type terms, thus revealing the structure of this type of inequalities and obtaining best constants. We then add the critical Sobolev term and obtain necessary and sufficient conditions for the validity of Hardy–Sobolev–Maz’ya type inequalities.</description><subject>Partial differential equations</subject><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKw0AURQdRsFbBT8hC0E3sm0xmJllKqVZp6aK6DpPJG0xIE52ZCHHlP_iHfomJla7u5XJ4vHsJuaRwG1NJZ0-L9XZGZXJEJjRmPEwTwY4PnvNTcuZcBUAlj9mEpJsm8K8YOG877TuLQWuCpbJF__P1vW3ztsaPwa3V53WvgrLB907VpS_RnZMTo2qHF_86JS_3i-f5MlxtHh7nd6tQMy58KA3mmhkpMOJSSzBJAVpTbnIQKGJMeIQ0AjRKxKDTAnPUWEiARBeSIrApudnf1bZ1zqLJ3my5U7bPKGRj5azCncuGygN6tUfHoGo72wyPHbBxmT_sF7A4V8w</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Filippas, Stathis</creator><creator>Tertikas, Achilles</creator><creator>Tidblom, Jesper</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090101</creationdate><title>On the structure of Hardy–Sobolev–Maz'ya inequalities</title><author>Filippas, Stathis ; Tertikas, Achilles ; Tidblom, Jesper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7febc3f76e257c70f8d0cc15fb06e64e852e120efa640c9debeced7008cd71e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filippas, Stathis</creatorcontrib><creatorcontrib>Tertikas, Achilles</creatorcontrib><creatorcontrib>Tidblom, Jesper</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filippas, Stathis</au><au>Tertikas, Achilles</au><au>Tidblom, Jesper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the structure of Hardy–Sobolev–Maz'ya inequalities</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><addtitle>J. Eur. Math. Soc</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>11</volume><issue>6</issue><spage>1165</spage><epage>1185</epage><pages>1165-1185</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>We establish new improvements of the optimal Hardy inequality in the half-space. We first add all possible linear combinations of Hardy type terms, thus revealing the structure of this type of inequalities and obtaining best constants. We then add the critical Sobolev term and obtain necessary and sufficient conditions for the validity of Hardy–Sobolev–Maz’ya type inequalities.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/JEMS/178</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-9855
ispartof Journal of the European Mathematical Society : JEMS, 2009-01, Vol.11 (6), p.1165-1185
issn 1435-9855
1435-9863
language eng
recordid cdi_crossref_primary_10_4171_jems_178
source European Mathematical Society Publishing House
subjects Partial differential equations
title On the structure of Hardy–Sobolev–Maz'ya inequalities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20structure%20of%20Hardy%E2%80%93Sobolev%E2%80%93Maz'ya%20inequalities&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Filippas,%20Stathis&rft.date=2009-01-01&rft.volume=11&rft.issue=6&rft.spage=1165&rft.epage=1185&rft.pages=1165-1185&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/JEMS/178&rft_dat=%3Cems_cross%3E10_4171_JEMS_178%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true