A neighbourhood theorem for submanifolds in generalized complex geometry
We study neighbourhoods of submanifolds in generalized complex geometry. Our first main result provides sufficient criteria for such a submanifold to admit a neighbourhood on which the generalized complex structure is B -field equivalent to a holomorphic Poisson structure. This is intimately tied wi...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2024-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of the European Mathematical Society : JEMS |
container_volume | |
creator | Bailey, Michael A. Cavalcanti, Gil R. van der Leer Durán, Joey L. |
description | We study neighbourhoods of submanifolds in generalized complex geometry. Our first main result provides sufficient criteria for such a submanifold to admit a neighbourhood on which the generalized complex structure is B -field equivalent to a holomorphic Poisson structure. This is intimately tied with our second main result, which is a rigidity theorem for generalized complex deformations of holomorphic Poisson structures. Specifically, on a compact manifold with boundary we provide explicit conditions under which any generalized complex perturbation of a holomorphic Poisson structure is B -field equivalent to another holomorphic Poisson structure. The proofs of these results require two analytical tools: Hodge decompositions on almost complex manifolds with boundary, and the Nash–Moser algorithm. As a concrete application of these results, we show that on a four-dimensional generalized complex submanifold which is generically symplectic, a neighbourhood of the entire complex locus is B -field equivalent to a holomorphic Poisson structure. Furthermore, we use the neighbourhood theorem to develop the theory of blowing down submanifolds in generalized complex geometry. |
doi_str_mv | 10.4171/jems/1555 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_1555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jems_1555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695-69faa3c5bd7f7a1c13cb8363614cb1d2127e8624c929fe020fe08dc9fb10669c3</originalsourceid><addsrcrecordid>eNo90LtOwzAYBWALgUQpDLyBV4ZQ_3HsxGNVcalUiaV75MvvJFUcV3YrUZ6GZ-HJoAKxnHOmM3yE3AN7rKCGxQ5DXoAQ4oLMoOKiUI3kl_9biGtyk_OOMahFxWdkvaQTDl1v4jH1MTp66DEmDNTHRPPRBD0NPo4u02H6-uxwwqTH4QMdtTHsR3ynHcaAh3S6JVdejxnv_npOts9P29VrsXl7Wa-Wm8JKJQqpvNbcCuNqX2uwwK1puOQSKmvAlVDW2MiysqpUHlnJfqJxVnkDTEpl-Zw8_N7aFHNO6Nt9GoJOpxZYeyZozwTtmYB_Aw0MUXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A neighbourhood theorem for submanifolds in generalized complex geometry</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bailey, Michael A. ; Cavalcanti, Gil R. ; van der Leer Durán, Joey L.</creator><creatorcontrib>Bailey, Michael A. ; Cavalcanti, Gil R. ; van der Leer Durán, Joey L.</creatorcontrib><description>We study neighbourhoods of submanifolds in generalized complex geometry. Our first main result provides sufficient criteria for such a submanifold to admit a neighbourhood on which the generalized complex structure is B -field equivalent to a holomorphic Poisson structure. This is intimately tied with our second main result, which is a rigidity theorem for generalized complex deformations of holomorphic Poisson structures. Specifically, on a compact manifold with boundary we provide explicit conditions under which any generalized complex perturbation of a holomorphic Poisson structure is B -field equivalent to another holomorphic Poisson structure. The proofs of these results require two analytical tools: Hodge decompositions on almost complex manifolds with boundary, and the Nash–Moser algorithm. As a concrete application of these results, we show that on a four-dimensional generalized complex submanifold which is generically symplectic, a neighbourhood of the entire complex locus is B -field equivalent to a holomorphic Poisson structure. Furthermore, we use the neighbourhood theorem to develop the theory of blowing down submanifolds in generalized complex geometry.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/jems/1555</identifier><language>eng</language><ispartof>Journal of the European Mathematical Society : JEMS, 2024-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4089-7460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Bailey, Michael A.</creatorcontrib><creatorcontrib>Cavalcanti, Gil R.</creatorcontrib><creatorcontrib>van der Leer Durán, Joey L.</creatorcontrib><title>A neighbourhood theorem for submanifolds in generalized complex geometry</title><title>Journal of the European Mathematical Society : JEMS</title><description>We study neighbourhoods of submanifolds in generalized complex geometry. Our first main result provides sufficient criteria for such a submanifold to admit a neighbourhood on which the generalized complex structure is B -field equivalent to a holomorphic Poisson structure. This is intimately tied with our second main result, which is a rigidity theorem for generalized complex deformations of holomorphic Poisson structures. Specifically, on a compact manifold with boundary we provide explicit conditions under which any generalized complex perturbation of a holomorphic Poisson structure is B -field equivalent to another holomorphic Poisson structure. The proofs of these results require two analytical tools: Hodge decompositions on almost complex manifolds with boundary, and the Nash–Moser algorithm. As a concrete application of these results, we show that on a four-dimensional generalized complex submanifold which is generically symplectic, a neighbourhood of the entire complex locus is B -field equivalent to a holomorphic Poisson structure. Furthermore, we use the neighbourhood theorem to develop the theory of blowing down submanifolds in generalized complex geometry.</description><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo90LtOwzAYBWALgUQpDLyBV4ZQ_3HsxGNVcalUiaV75MvvJFUcV3YrUZ6GZ-HJoAKxnHOmM3yE3AN7rKCGxQ5DXoAQ4oLMoOKiUI3kl_9biGtyk_OOMahFxWdkvaQTDl1v4jH1MTp66DEmDNTHRPPRBD0NPo4u02H6-uxwwqTH4QMdtTHsR3ynHcaAh3S6JVdejxnv_npOts9P29VrsXl7Wa-Wm8JKJQqpvNbcCuNqX2uwwK1puOQSKmvAlVDW2MiysqpUHlnJfqJxVnkDTEpl-Zw8_N7aFHNO6Nt9GoJOpxZYeyZozwTtmYB_Aw0MUXo</recordid><startdate>20241127</startdate><enddate>20241127</enddate><creator>Bailey, Michael A.</creator><creator>Cavalcanti, Gil R.</creator><creator>van der Leer Durán, Joey L.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4089-7460</orcidid></search><sort><creationdate>20241127</creationdate><title>A neighbourhood theorem for submanifolds in generalized complex geometry</title><author>Bailey, Michael A. ; Cavalcanti, Gil R. ; van der Leer Durán, Joey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695-69faa3c5bd7f7a1c13cb8363614cb1d2127e8624c929fe020fe08dc9fb10669c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bailey, Michael A.</creatorcontrib><creatorcontrib>Cavalcanti, Gil R.</creatorcontrib><creatorcontrib>van der Leer Durán, Joey L.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailey, Michael A.</au><au>Cavalcanti, Gil R.</au><au>van der Leer Durán, Joey L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neighbourhood theorem for submanifolds in generalized complex geometry</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><date>2024-11-27</date><risdate>2024</risdate><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>We study neighbourhoods of submanifolds in generalized complex geometry. Our first main result provides sufficient criteria for such a submanifold to admit a neighbourhood on which the generalized complex structure is B -field equivalent to a holomorphic Poisson structure. This is intimately tied with our second main result, which is a rigidity theorem for generalized complex deformations of holomorphic Poisson structures. Specifically, on a compact manifold with boundary we provide explicit conditions under which any generalized complex perturbation of a holomorphic Poisson structure is B -field equivalent to another holomorphic Poisson structure. The proofs of these results require two analytical tools: Hodge decompositions on almost complex manifolds with boundary, and the Nash–Moser algorithm. As a concrete application of these results, we show that on a four-dimensional generalized complex submanifold which is generically symplectic, a neighbourhood of the entire complex locus is B -field equivalent to a holomorphic Poisson structure. Furthermore, we use the neighbourhood theorem to develop the theory of blowing down submanifolds in generalized complex geometry.</abstract><doi>10.4171/jems/1555</doi><orcidid>https://orcid.org/0000-0002-4089-7460</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-9855 |
ispartof | Journal of the European Mathematical Society : JEMS, 2024-11 |
issn | 1435-9855 1435-9863 |
language | eng |
recordid | cdi_crossref_primary_10_4171_jems_1555 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | A neighbourhood theorem for submanifolds in generalized complex geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neighbourhood%20theorem%20for%20submanifolds%20in%C2%A0generalized%20complex%20geometry&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Bailey,%20Michael%C2%A0A.&rft.date=2024-11-27&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/jems/1555&rft_dat=%3Ccrossref%3E10_4171_jems_1555%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |