A neighbourhood theorem for submanifolds in generalized complex geometry

We study neighbourhoods of submanifolds in generalized complex geometry. Our first main result provides sufficient criteria for such a submanifold to admit a neighbourhood on which the generalized complex structure is B -field equivalent to a holomorphic Poisson structure. This is intimately tied wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2024-11
Hauptverfasser: Bailey, Michael A., Cavalcanti, Gil R., van der Leer Durán, Joey L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of the European Mathematical Society : JEMS
container_volume
creator Bailey, Michael A.
Cavalcanti, Gil R.
van der Leer Durán, Joey L.
description We study neighbourhoods of submanifolds in generalized complex geometry. Our first main result provides sufficient criteria for such a submanifold to admit a neighbourhood on which the generalized complex structure is B -field equivalent to a holomorphic Poisson structure. This is intimately tied with our second main result, which is a rigidity theorem for generalized complex deformations of holomorphic Poisson structures. Specifically, on a compact manifold with boundary we provide explicit conditions under which any generalized complex perturbation of a holomorphic Poisson structure is B -field equivalent to another holomorphic Poisson structure. The proofs of these results require two analytical tools: Hodge decompositions on almost complex manifolds with boundary, and the Nash–Moser algorithm. As a concrete application of these results, we show that on a four-dimensional generalized complex submanifold which is generically symplectic, a neighbourhood of the entire complex locus is B -field equivalent to a holomorphic Poisson structure. Furthermore, we use the neighbourhood theorem to develop the theory of blowing down submanifolds in generalized complex geometry.
doi_str_mv 10.4171/jems/1555
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_1555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jems_1555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695-69faa3c5bd7f7a1c13cb8363614cb1d2127e8624c929fe020fe08dc9fb10669c3</originalsourceid><addsrcrecordid>eNo90LtOwzAYBWALgUQpDLyBV4ZQ_3HsxGNVcalUiaV75MvvJFUcV3YrUZ6GZ-HJoAKxnHOmM3yE3AN7rKCGxQ5DXoAQ4oLMoOKiUI3kl_9biGtyk_OOMahFxWdkvaQTDl1v4jH1MTp66DEmDNTHRPPRBD0NPo4u02H6-uxwwqTH4QMdtTHsR3ynHcaAh3S6JVdejxnv_npOts9P29VrsXl7Wa-Wm8JKJQqpvNbcCuNqX2uwwK1puOQSKmvAlVDW2MiysqpUHlnJfqJxVnkDTEpl-Zw8_N7aFHNO6Nt9GoJOpxZYeyZozwTtmYB_Aw0MUXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A neighbourhood theorem for submanifolds in generalized complex geometry</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bailey, Michael A. ; Cavalcanti, Gil R. ; van der Leer Durán, Joey L.</creator><creatorcontrib>Bailey, Michael A. ; Cavalcanti, Gil R. ; van der Leer Durán, Joey L.</creatorcontrib><description>We study neighbourhoods of submanifolds in generalized complex geometry. Our first main result provides sufficient criteria for such a submanifold to admit a neighbourhood on which the generalized complex structure is B -field equivalent to a holomorphic Poisson structure. This is intimately tied with our second main result, which is a rigidity theorem for generalized complex deformations of holomorphic Poisson structures. Specifically, on a compact manifold with boundary we provide explicit conditions under which any generalized complex perturbation of a holomorphic Poisson structure is B -field equivalent to another holomorphic Poisson structure. The proofs of these results require two analytical tools: Hodge decompositions on almost complex manifolds with boundary, and the Nash–Moser algorithm. As a concrete application of these results, we show that on a four-dimensional generalized complex submanifold which is generically symplectic, a neighbourhood of the entire complex locus is B -field equivalent to a holomorphic Poisson structure. Furthermore, we use the neighbourhood theorem to develop the theory of blowing down submanifolds in generalized complex geometry.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/jems/1555</identifier><language>eng</language><ispartof>Journal of the European Mathematical Society : JEMS, 2024-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4089-7460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Bailey, Michael A.</creatorcontrib><creatorcontrib>Cavalcanti, Gil R.</creatorcontrib><creatorcontrib>van der Leer Durán, Joey L.</creatorcontrib><title>A neighbourhood theorem for submanifolds in generalized complex geometry</title><title>Journal of the European Mathematical Society : JEMS</title><description>We study neighbourhoods of submanifolds in generalized complex geometry. Our first main result provides sufficient criteria for such a submanifold to admit a neighbourhood on which the generalized complex structure is B -field equivalent to a holomorphic Poisson structure. This is intimately tied with our second main result, which is a rigidity theorem for generalized complex deformations of holomorphic Poisson structures. Specifically, on a compact manifold with boundary we provide explicit conditions under which any generalized complex perturbation of a holomorphic Poisson structure is B -field equivalent to another holomorphic Poisson structure. The proofs of these results require two analytical tools: Hodge decompositions on almost complex manifolds with boundary, and the Nash–Moser algorithm. As a concrete application of these results, we show that on a four-dimensional generalized complex submanifold which is generically symplectic, a neighbourhood of the entire complex locus is B -field equivalent to a holomorphic Poisson structure. Furthermore, we use the neighbourhood theorem to develop the theory of blowing down submanifolds in generalized complex geometry.</description><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo90LtOwzAYBWALgUQpDLyBV4ZQ_3HsxGNVcalUiaV75MvvJFUcV3YrUZ6GZ-HJoAKxnHOmM3yE3AN7rKCGxQ5DXoAQ4oLMoOKiUI3kl_9biGtyk_OOMahFxWdkvaQTDl1v4jH1MTp66DEmDNTHRPPRBD0NPo4u02H6-uxwwqTH4QMdtTHsR3ynHcaAh3S6JVdejxnv_npOts9P29VrsXl7Wa-Wm8JKJQqpvNbcCuNqX2uwwK1puOQSKmvAlVDW2MiysqpUHlnJfqJxVnkDTEpl-Zw8_N7aFHNO6Nt9GoJOpxZYeyZozwTtmYB_Aw0MUXo</recordid><startdate>20241127</startdate><enddate>20241127</enddate><creator>Bailey, Michael A.</creator><creator>Cavalcanti, Gil R.</creator><creator>van der Leer Durán, Joey L.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4089-7460</orcidid></search><sort><creationdate>20241127</creationdate><title>A neighbourhood theorem for submanifolds in generalized complex geometry</title><author>Bailey, Michael A. ; Cavalcanti, Gil R. ; van der Leer Durán, Joey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695-69faa3c5bd7f7a1c13cb8363614cb1d2127e8624c929fe020fe08dc9fb10669c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bailey, Michael A.</creatorcontrib><creatorcontrib>Cavalcanti, Gil R.</creatorcontrib><creatorcontrib>van der Leer Durán, Joey L.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailey, Michael A.</au><au>Cavalcanti, Gil R.</au><au>van der Leer Durán, Joey L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neighbourhood theorem for submanifolds in generalized complex geometry</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><date>2024-11-27</date><risdate>2024</risdate><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>We study neighbourhoods of submanifolds in generalized complex geometry. Our first main result provides sufficient criteria for such a submanifold to admit a neighbourhood on which the generalized complex structure is B -field equivalent to a holomorphic Poisson structure. This is intimately tied with our second main result, which is a rigidity theorem for generalized complex deformations of holomorphic Poisson structures. Specifically, on a compact manifold with boundary we provide explicit conditions under which any generalized complex perturbation of a holomorphic Poisson structure is B -field equivalent to another holomorphic Poisson structure. The proofs of these results require two analytical tools: Hodge decompositions on almost complex manifolds with boundary, and the Nash–Moser algorithm. As a concrete application of these results, we show that on a four-dimensional generalized complex submanifold which is generically symplectic, a neighbourhood of the entire complex locus is B -field equivalent to a holomorphic Poisson structure. Furthermore, we use the neighbourhood theorem to develop the theory of blowing down submanifolds in generalized complex geometry.</abstract><doi>10.4171/jems/1555</doi><orcidid>https://orcid.org/0000-0002-4089-7460</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-9855
ispartof Journal of the European Mathematical Society : JEMS, 2024-11
issn 1435-9855
1435-9863
language eng
recordid cdi_crossref_primary_10_4171_jems_1555
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title A neighbourhood theorem for submanifolds in generalized complex geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neighbourhood%20theorem%20for%20submanifolds%20in%C2%A0generalized%20complex%20geometry&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Bailey,%20Michael%C2%A0A.&rft.date=2024-11-27&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/jems/1555&rft_dat=%3Ccrossref%3E10_4171_jems_1555%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true