Enriques surfaces of non-degeneracy 3
We classify all non-extendable 3-sequences of half-fibers on Enriques surfaces. If the characteristic is different from 2, we prove in particular that every Enriques surface admits a 4-sequence, which implies that every Enriques surface is the minimal desingularization of an Enriques sextic, and tha...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2024-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of the European Mathematical Society : JEMS |
container_volume | |
creator | Martin, Gebhard Mezzedimi, Giacomo Veniani, Davide Cesare |
description | We classify all non-extendable 3-sequences of half-fibers on Enriques surfaces. If the characteristic is different from 2, we prove in particular that every Enriques surface admits a 4-sequence, which implies that every Enriques surface is the minimal desingularization of an Enriques sextic, and that every Enriques surface is birational to a Castelnuovo quintic. |
doi_str_mv | 10.4171/jems/1533 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_1533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jems_1533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c693-e99e4cec94f1cdc7321163c6c4f8d1d9a6f786b620f7c5a75526239cfbcc80c83</originalsourceid><addsrcrecordid>eNo9zz1LA0EUheFBFIzRIv9gGwuLSebunc9SQtRAwCb9MLl7JySYXZ0hRf69LorVeasDjxAzUHMNDhZHPtUFGMQrMQGNRgZv8fq_jbkVd7UelQJnNE7E46ovh68z16aeS070E0Nu-qGXHe-555Lo0uC9uMnpo_LD307F9mW1Xb7Jzfvrevm8kWQDSg6BNTEFnYE6ctgCWCRLOvsOupBsdt7ubKuyI5OcMa1tMVDeEXlFHqfi6feWylBr4Rw_y-GUyiWCiiMvjrw48vAbp3ZCYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enriques surfaces of non-degeneracy 3</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Martin, Gebhard ; Mezzedimi, Giacomo ; Veniani, Davide Cesare</creator><creatorcontrib>Martin, Gebhard ; Mezzedimi, Giacomo ; Veniani, Davide Cesare</creatorcontrib><description>We classify all non-extendable 3-sequences of half-fibers on Enriques surfaces. If the characteristic is different from 2, we prove in particular that every Enriques surface admits a 4-sequence, which implies that every Enriques surface is the minimal desingularization of an Enriques sextic, and that every Enriques surface is birational to a Castelnuovo quintic.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/jems/1533</identifier><language>eng</language><ispartof>Journal of the European Mathematical Society : JEMS, 2024-10</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4153-5904 ; 0000-0001-6129-6587 ; 0000-0003-4511-7555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27928,27929</link.rule.ids></links><search><creatorcontrib>Martin, Gebhard</creatorcontrib><creatorcontrib>Mezzedimi, Giacomo</creatorcontrib><creatorcontrib>Veniani, Davide Cesare</creatorcontrib><title>Enriques surfaces of non-degeneracy 3</title><title>Journal of the European Mathematical Society : JEMS</title><description>We classify all non-extendable 3-sequences of half-fibers on Enriques surfaces. If the characteristic is different from 2, we prove in particular that every Enriques surface admits a 4-sequence, which implies that every Enriques surface is the minimal desingularization of an Enriques sextic, and that every Enriques surface is birational to a Castelnuovo quintic.</description><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9zz1LA0EUheFBFIzRIv9gGwuLSebunc9SQtRAwCb9MLl7JySYXZ0hRf69LorVeasDjxAzUHMNDhZHPtUFGMQrMQGNRgZv8fq_jbkVd7UelQJnNE7E46ovh68z16aeS070E0Nu-qGXHe-555Lo0uC9uMnpo_LD307F9mW1Xb7Jzfvrevm8kWQDSg6BNTEFnYE6ctgCWCRLOvsOupBsdt7ubKuyI5OcMa1tMVDeEXlFHqfi6feWylBr4Rw_y-GUyiWCiiMvjrw48vAbp3ZCYQ</recordid><startdate>20241002</startdate><enddate>20241002</enddate><creator>Martin, Gebhard</creator><creator>Mezzedimi, Giacomo</creator><creator>Veniani, Davide Cesare</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4153-5904</orcidid><orcidid>https://orcid.org/0000-0001-6129-6587</orcidid><orcidid>https://orcid.org/0000-0003-4511-7555</orcidid></search><sort><creationdate>20241002</creationdate><title>Enriques surfaces of non-degeneracy 3</title><author>Martin, Gebhard ; Mezzedimi, Giacomo ; Veniani, Davide Cesare</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c693-e99e4cec94f1cdc7321163c6c4f8d1d9a6f786b620f7c5a75526239cfbcc80c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Gebhard</creatorcontrib><creatorcontrib>Mezzedimi, Giacomo</creatorcontrib><creatorcontrib>Veniani, Davide Cesare</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Gebhard</au><au>Mezzedimi, Giacomo</au><au>Veniani, Davide Cesare</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enriques surfaces of non-degeneracy 3</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><date>2024-10-02</date><risdate>2024</risdate><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>We classify all non-extendable 3-sequences of half-fibers on Enriques surfaces. If the characteristic is different from 2, we prove in particular that every Enriques surface admits a 4-sequence, which implies that every Enriques surface is the minimal desingularization of an Enriques sextic, and that every Enriques surface is birational to a Castelnuovo quintic.</abstract><doi>10.4171/jems/1533</doi><orcidid>https://orcid.org/0000-0002-4153-5904</orcidid><orcidid>https://orcid.org/0000-0001-6129-6587</orcidid><orcidid>https://orcid.org/0000-0003-4511-7555</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-9855 |
ispartof | Journal of the European Mathematical Society : JEMS, 2024-10 |
issn | 1435-9855 1435-9863 |
language | eng |
recordid | cdi_crossref_primary_10_4171_jems_1533 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Enriques surfaces of non-degeneracy 3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enriques%20surfaces%20of%20non-degeneracy%203&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Martin,%20Gebhard&rft.date=2024-10-02&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/jems/1533&rft_dat=%3Ccrossref%3E10_4171_jems_1533%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |