A descriptive approach to higher derived limits

We present a new aspect of the study of higher derived limits. More precisely, we introduce a complexity measure for the elements of higher derived limits over the directed set \Omega of functions from \mathbb{N} to \mathbb{N} and prove that cocycles of this complexity are images of cochains of roug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2024-06
Hauptverfasser: Bannister, Nathaniel, Bergfalk, Jeffrey, Moore, Justin Tatch, Todorcevic, Stevo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of the European Mathematical Society : JEMS
container_volume
creator Bannister, Nathaniel
Bergfalk, Jeffrey
Moore, Justin Tatch
Todorcevic, Stevo
description We present a new aspect of the study of higher derived limits. More precisely, we introduce a complexity measure for the elements of higher derived limits over the directed set \Omega of functions from \mathbb{N} to \mathbb{N} and prove that cocycles of this complexity are images of cochains of roughly the same complexity. In the course of this work, we isolate a partition principle for powers of directed sets and show that whenever this principle holds, the corresponding derived limit \lim\nolimits^{n} is additive; vanishing results for this limit are the typical corollary. The formulation of this partition hypothesis synthesizes and clarifies several recent advances in this area.
doi_str_mv 10.4171/jems/1464
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_1464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jems_1464</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_4171_jems_14643</originalsourceid><addsrcrecordid>eNqVjr0KwjAURi-iYP0ZfIOsDjUJSVodRRQfwD2ENrUpLQ33FsG3twVxd_o-OGc4ADspDlrmkje-Iy51pmeQSK1Mejpmav77xixhRdQIIXOjVQL8zEpPBYY4hJdnLkbsXVGzoWd1eNYeR4wjKVkbujDQBhaVa8lvv7uG_e36uNzTAnsi9JWNGDqHbyuFnYrsVGSnIvWP-wETZzzi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A descriptive approach to higher derived limits</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bannister, Nathaniel ; Bergfalk, Jeffrey ; Moore, Justin Tatch ; Todorcevic, Stevo</creator><creatorcontrib>Bannister, Nathaniel ; Bergfalk, Jeffrey ; Moore, Justin Tatch ; Todorcevic, Stevo</creatorcontrib><description>We present a new aspect of the study of higher derived limits. More precisely, we introduce a complexity measure for the elements of higher derived limits over the directed set \Omega of functions from \mathbb{N} to \mathbb{N} and prove that cocycles of this complexity are images of cochains of roughly the same complexity. In the course of this work, we isolate a partition principle for powers of directed sets and show that whenever this principle holds, the corresponding derived limit \lim\nolimits^{n} is additive; vanishing results for this limit are the typical corollary. The formulation of this partition hypothesis synthesizes and clarifies several recent advances in this area.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/jems/1464</identifier><language>eng</language><ispartof>Journal of the European Mathematical Society : JEMS, 2024-06</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9424-7343 ; 0009-0004-6607-0148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Bannister, Nathaniel</creatorcontrib><creatorcontrib>Bergfalk, Jeffrey</creatorcontrib><creatorcontrib>Moore, Justin Tatch</creatorcontrib><creatorcontrib>Todorcevic, Stevo</creatorcontrib><title>A descriptive approach to higher derived limits</title><title>Journal of the European Mathematical Society : JEMS</title><description>We present a new aspect of the study of higher derived limits. More precisely, we introduce a complexity measure for the elements of higher derived limits over the directed set \Omega of functions from \mathbb{N} to \mathbb{N} and prove that cocycles of this complexity are images of cochains of roughly the same complexity. In the course of this work, we isolate a partition principle for powers of directed sets and show that whenever this principle holds, the corresponding derived limit \lim\nolimits^{n} is additive; vanishing results for this limit are the typical corollary. The formulation of this partition hypothesis synthesizes and clarifies several recent advances in this area.</description><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjr0KwjAURi-iYP0ZfIOsDjUJSVodRRQfwD2ENrUpLQ33FsG3twVxd_o-OGc4ADspDlrmkje-Iy51pmeQSK1Mejpmav77xixhRdQIIXOjVQL8zEpPBYY4hJdnLkbsXVGzoWd1eNYeR4wjKVkbujDQBhaVa8lvv7uG_e36uNzTAnsi9JWNGDqHbyuFnYrsVGSnIvWP-wETZzzi</recordid><startdate>20240606</startdate><enddate>20240606</enddate><creator>Bannister, Nathaniel</creator><creator>Bergfalk, Jeffrey</creator><creator>Moore, Justin Tatch</creator><creator>Todorcevic, Stevo</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9424-7343</orcidid><orcidid>https://orcid.org/0009-0004-6607-0148</orcidid></search><sort><creationdate>20240606</creationdate><title>A descriptive approach to higher derived limits</title><author>Bannister, Nathaniel ; Bergfalk, Jeffrey ; Moore, Justin Tatch ; Todorcevic, Stevo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_4171_jems_14643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bannister, Nathaniel</creatorcontrib><creatorcontrib>Bergfalk, Jeffrey</creatorcontrib><creatorcontrib>Moore, Justin Tatch</creatorcontrib><creatorcontrib>Todorcevic, Stevo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bannister, Nathaniel</au><au>Bergfalk, Jeffrey</au><au>Moore, Justin Tatch</au><au>Todorcevic, Stevo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A descriptive approach to higher derived limits</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><date>2024-06-06</date><risdate>2024</risdate><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>We present a new aspect of the study of higher derived limits. More precisely, we introduce a complexity measure for the elements of higher derived limits over the directed set \Omega of functions from \mathbb{N} to \mathbb{N} and prove that cocycles of this complexity are images of cochains of roughly the same complexity. In the course of this work, we isolate a partition principle for powers of directed sets and show that whenever this principle holds, the corresponding derived limit \lim\nolimits^{n} is additive; vanishing results for this limit are the typical corollary. The formulation of this partition hypothesis synthesizes and clarifies several recent advances in this area.</abstract><doi>10.4171/jems/1464</doi><orcidid>https://orcid.org/0000-0001-9424-7343</orcidid><orcidid>https://orcid.org/0009-0004-6607-0148</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1435-9855
ispartof Journal of the European Mathematical Society : JEMS, 2024-06
issn 1435-9855
1435-9863
language eng
recordid cdi_crossref_primary_10_4171_jems_1464
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title A descriptive approach to higher derived limits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T20%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20descriptive%20approach%20to%20higher%20derived%20limits&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Bannister,%20Nathaniel&rft.date=2024-06-06&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/jems/1464&rft_dat=%3Ccrossref%3E10_4171_jems_1464%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true